These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27877651)

  • 1. Magnetovolume effects in manganese nitrides with antiperovskite structure.
    Takenaka K; Ichigo M; Hamada T; Ozawa A; Shibayama T; Inagaki T; Asano K
    Sci Technol Adv Mater; 2014 Feb; 15(1):015009. PubMed ID: 27877651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local lattice distortion in the giant negative thermal expansion material Mn3Cu1-xGexN.
    Iikubo S; Kodama K; Takenaka K; Takagi H; Takigawa M; Shamoto S
    Phys Rev Lett; 2008 Nov; 101(20):205901. PubMed ID: 19113356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-Composition-Property Relationships in Antiperovskite Nitrides: Guiding a Rational Alloy Design.
    Zhong H; Feng C; Wang H; Han D; Yu G; Xiong W; Li Y; Yang M; Tang G; Yuan S
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48516-48524. PubMed ID: 34612037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large magnetovolume effects due to transition from the ferromagnetic to antiferromagnetic state in Hf0.825Ta0.175Fe2 intermetallic compound.
    Diop LV; Amara M; Isnard O
    J Phys Condens Matter; 2013 Oct; 25(41):416007. PubMed ID: 24061206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic ordering in nitrides with the eta-carbide structure, (Ni,Co,Fe)2(Ga,Ge)Mo3N.
    Sviridov LA; Battle PD; Grandjean F; Long GJ; Prior TJ
    Inorg Chem; 2010 Feb; 49(3):1133-43. PubMed ID: 20030337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large Magnetovolume Effect Induced by Embedding Ferromagnetic Clusters into Antiferromagnetic Matrix of Cobaltite Perovskite.
    Miao P; Lin X; Koda A; Lee S; Ishikawa Y; Torii S; Yonemura M; Mochiku T; Sagayama H; Itoh S; Ikeda K; Otomo T; Wang Y; Kadono R; Kamiyama T
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28480977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles investigation of Ge doping effects on the structural, electronic and magnetic properties in antiperovskite Mn(3)CuN.
    Hua L; Wang L; Chen LF
    J Phys Condens Matter; 2010 May; 22(20):206003. PubMed ID: 21393714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Cr Substitution on Negative Thermal Expansion and Magnetic Properties of Antiperovskite Ga
    Guo X; Tong P; Lin J; Yang C; Zhang K; Lin S; Song W; Sun Y
    Front Chem; 2018; 6():75. PubMed ID: 29619367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low temperature magnetic behavior and thermal expansion anomaly of cubic CeTiO
    Li J; Gong A; Qiu L; Yang X; Zhang Z; Feng W; Bai Y; Wang Y; Fan R
    RSC Adv; 2022 Jun; 12(27):17005-17011. PubMed ID: 35755581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and Phase Transformation in the Giant Magnetostriction Laves-Phase SmFe
    Liu X; Lin K; Gao Q; Zhu H; Li Q; Cao Y; Liu Z; You L; Chen J; Ren Y; Huang R; Lapidus SH; Xing X
    Inorg Chem; 2018 Jan; 57(2):689-694. PubMed ID: 29283569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct hybridization gap from intersite and onsite electronic interactions in CeAg
    Banik S; Arya A; Sinha AK
    RSC Adv; 2020 Jun; 10(41):24343-24351. PubMed ID: 35516211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetostructural phase transitions in Ni(50)Mn(25+x)Sb(25-x) Heusler alloys.
    Khan M; Dubenko I; Stadler S; Ali N
    J Phys Condens Matter; 2008 Jun; 20(23):235204. PubMed ID: 21694295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic structure and uniaxial negative thermal expansion in antiferromagnetic CrSb.
    Yuan J; Song Y; Xing X; Chen J
    Dalton Trans; 2020 Dec; 49(48):17605-17611. PubMed ID: 33241795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room Temperature Zero Thermal Expansion in a Cubic Cobaltite.
    Tan Z; Miao P; Hagihala M; Lee S; Ishikawa Y; Torii S; Yonemura M; Saito T; Deng S; Chen J; He L; Du R; Zhang J; Li H; Sun J; Wang Y; Lin X; Li K; Kamiyama T
    J Phys Chem Lett; 2020 Aug; 11(16):6785-6790. PubMed ID: 32701301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Ammonolytic Synthesis, Structure Determination, Electronic Structure, and Magnetic Properties of the Solid Solution Sn(x)Fe(4-x)N (0 ≤ x ≤ 0.9).
    Scholz T; Dronskowski R
    Inorg Chem; 2015 Sep; 54(17):8800-7. PubMed ID: 26287437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antiferromagnetic Correlations in Strongly Valence Fluctuating CeIrSn.
    Shimura Y; Wörl A; Sundermann M; Tsuda S; Adroja DT; Bhattacharyya A; Strydom AM; Hillier AD; Pratt FL; Gloskovskii A; Severing A; Onimaru T; Gegenwart P; Takabatake T
    Phys Rev Lett; 2021 May; 126(21):217202. PubMed ID: 34114835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetism in bcc and fcc Fe with carbon and manganese.
    Medvedeva NI; Van Aken D; Medvedeva JE
    J Phys Condens Matter; 2010 Aug; 22(31):316002. PubMed ID: 21399372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large magnetostriction and negative thermal expansion in the frustrated antiferromagnet ZnCr2Se4.
    Hemberger J; von Nidda HA; Tsurkan V; Loidl A
    Phys Rev Lett; 2007 Apr; 98(14):147203. PubMed ID: 17501308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced magnetocaloric effect in Ni-Mn-Sn-Co alloys with two successive magnetostructural transformations.
    Zhang X; Zhang H; Qian M; Geng L
    Sci Rep; 2018 May; 8(1):8235. PubMed ID: 29844436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frustration- and doping-induced magnetism in a Fermi-Hubbard simulator.
    Xu M; Kendrick LH; Kale A; Gang Y; Ji G; Scalettar RT; Lebrat M; Greiner M
    Nature; 2023 Aug; 620(7976):971-976. PubMed ID: 37532942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.