These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27877688)

  • 1. Theoretical and experimental investigation of the excellent p-n control in yttrium aluminoborides.
    Sahara R; Mori T; Maruyama S; Miyazaki Y; Hayashi K; Kajitani T
    Sci Technol Adv Mater; 2014 Jun; 15(3):035012. PubMed ID: 27877688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Synthesis Route for Complex Borides; Rapid Synthesis of Thermoelectric Yttrium Aluminoboride via Liquid-Phase Assisted Reactive Spark Plasma Sintering.
    Son HW; Berthebaud D; Yubuta K; Yoshikawa A; Shishido T; Suzuta K; Mori T
    Sci Rep; 2020 Jun; 10(1):8914. PubMed ID: 32488132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thickness and defect dependent electronic, optical and thermoelectric features of [Formula: see text].
    Ozdemir I; Holleitner AW; Kastl C; Aktürk OÜ
    Sci Rep; 2022 Jul; 12(1):12756. PubMed ID: 35882909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal Structures, Phase Stabilities, Electronic Properties, and Hardness of Yttrium Borides: New Insight from First-Principles Calculations.
    Ding LP; Tiandong YH; Shao P; Tang Y; Zhao ZL; Lu H
    J Phys Chem Lett; 2021 Jun; 12(22):5423-5429. PubMed ID: 34080883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p-n Control of AlMgB
    Fujima T; Shimizu N; Arimatsu H
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30791570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoelectric characteristics of X[Formula: see text]YH[Formula: see text] monolayers (X=Si, Ge; Y=P, As, Sb, Bi): a first-principles study.
    Mohebpour MA; Mozvashi SM; Vishkayi SI; Tagani MB
    Sci Rep; 2021 Dec; 11(1):23840. PubMed ID: 34903762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the molybdenum dichalcogenide crystals: recent developments and novelty of the P-MoS
    Samanian M; Ghatee MH
    J Mol Model; 2021 Aug; 27(9):268. PubMed ID: 34455502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site occupancy, composition and magnetic structure dependencies of martensitic transformation in Mn
    Kundu A; Ghosh S
    J Phys Condens Matter; 2018 Jan; 30(1):015401. PubMed ID: 29185997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low lattice thermal conductivity and excellent thermoelectric behavior in Li
    Yang X; Dai Z; Zhao Y; Liu J; Meng S
    J Phys Condens Matter; 2018 Oct; 30(42):425401. PubMed ID: 30168447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospects for Engineering Thermoelectric Properties in La
    Kepaptsoglou D; Baran JD; Azough F; Ekren D; Srivastava D; Molinari M; Parker SC; Ramasse QM; Freer R
    Inorg Chem; 2018 Jan; 57(1):45-55. PubMed ID: 29257680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the site occupancies determined by combined Rietveld refinement and density functional theory calculations: example of the ternary Mo-Ni-Re σ phase.
    Yaqoob K; Crivello JC; Joubert JM
    Inorg Chem; 2012 Mar; 51(5):3071-8. PubMed ID: 22356428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective modelling of the Seebeck coefficient of Fe
    Naydenov GA; Hasnip PJ; Lazarov VK; Probert MIJ
    J Phys Condens Matter; 2020 Mar; 32(12):125401. PubMed ID: 31739289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gd
    Muthuselvam IP; Nehru R; Babu KR; Saranya K; Kaul SN; Chen SM; Chen WT; Liu Y; Guo GY; Xiu F; Sankar R
    J Phys Condens Matter; 2019 Jul; 31(28):285802. PubMed ID: 30939461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic and electronic structures of Si(1 1 1)-(√3 x √3)R30°-Au and (6 × 6)-Au surfaces.
    Patterson CH
    J Phys Condens Matter; 2015 Dec; 27(47):475001. PubMed ID: 26459741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducing half metallicity with alloying in Heusler Compound CoFeMnSb.
    Kumar U; Sreenivasa Reddy PV; Bhattacharjee S; Lee SC
    J Phys Condens Matter; 2019 Aug; 31(33):335702. PubMed ID: 31071685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray diffraction study and molecular dynamic simulation of liquid Al-Cu alloys: a new data and interatomic potentials comparison.
    Kashyrina YO; Muratov AS; Kazimirov VP; Roik OS
    J Mol Model; 2022 Jun; 28(7):203. PubMed ID: 35752709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoelectric properties of gapped bilayer graphene.
    Suszalski D; Rut G; Rycerz A
    J Phys Condens Matter; 2019 Oct; 31(41):415501. PubMed ID: 31242476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical prediction of two-dimensional BC
    Bafekry A; Naseri M; Faraji M; Fadlallah MM; Hoat DM; Jappor HR; Ghergherehchi M; Gogova D; Afarideh H
    Sci Rep; 2022 Dec; 12(1):22269. PubMed ID: 36564522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced superconductivity in SnSb under pressure: a first principles study.
    Sreenivasa Reddy PV; Kanchana V
    J Phys Condens Matter; 2017 Oct; 29(40):405502. PubMed ID: 28691690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferromagnetism in graphene traced to antisymmetric orbital combination of involved electronic states.
    Xu W; Che JG
    J Phys Condens Matter; 2019 Mar; 31(9):095801. PubMed ID: 30537682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.