These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 27877714)
1. Modification of the structural and electrical properties of graphene layers by Pt adsorbates. Iqbal MW; Iqbal MZ; Khan MF; Jin X; Hwang C; Eom J Sci Technol Adv Mater; 2014 Oct; 15(5):055002. PubMed ID: 27877714 [TBL] [Abstract][Full Text] [Related]
2. Raman fingerprint of doping due to metal adsorbates on graphene. Iqbal MW; Singh AK; Iqbal MZ; Eom J J Phys Condens Matter; 2012 Aug; 24(33):335301. PubMed ID: 22814217 [TBL] [Abstract][Full Text] [Related]
3. Tailoring the electrical properties of graphene layers by molecular doping. Singh AK; Ahmad M; Singh VK; Shin K; Seo Y; Eom J ACS Appl Mater Interfaces; 2013 Jun; 5(11):5276-81. PubMed ID: 23676855 [TBL] [Abstract][Full Text] [Related]
4. Improving the electrical properties of graphene layers by chemical doping. Khan MF; Iqbal MZ; Iqbal MW; Eom J Sci Technol Adv Mater; 2014 Oct; 15(5):055004. PubMed ID: 27877716 [TBL] [Abstract][Full Text] [Related]
5. Interaction between metal and graphene: dependence on the layer number of graphene. Lee J; Novoselov KS; Shin HS ACS Nano; 2011 Jan; 5(1):608-12. PubMed ID: 21174405 [TBL] [Abstract][Full Text] [Related]
12. Hybrid opto-chemical doping in Ag nanoparticle-decorated monolayer graphene grown by chemical vapor deposition probed by Raman spectroscopy. Maiti R; Haldar S; Majumdar D; Singha A; Ray SK Nanotechnology; 2017 Feb; 28(7):075707. PubMed ID: 27976628 [TBL] [Abstract][Full Text] [Related]
13. Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides. Pimenta MA; Del Corro E; Carvalho BR; Fantini C; Malard LM Acc Chem Res; 2015 Jan; 48(1):41-7. PubMed ID: 25490518 [TBL] [Abstract][Full Text] [Related]
14. Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density. Hwang JY; Kuo CC; Chen LC; Chen KH Nanotechnology; 2010 Nov; 21(46):465705. PubMed ID: 20972312 [TBL] [Abstract][Full Text] [Related]
15. N-doped graphene field-effect transistors with enhanced electron mobility and air-stability. Xu W; Lim TS; Seo HK; Min SY; Cho H; Park MH; Kim YH; Lee TW Small; 2014 May; 10(10):1999-2005. PubMed ID: 24616289 [TBL] [Abstract][Full Text] [Related]
16. Surface-enhanced Raman scattering of suspended monolayer graphene. Huang CW; Lin BJ; Lin HY; Huang CH; Shih FY; Wang WH; Liu CY; Chui HC Nanoscale Res Lett; 2013 Nov; 8(1):480. PubMed ID: 24229405 [TBL] [Abstract][Full Text] [Related]
17. Metal free growth of graphene on quartz substrate using chemical vapor deposition (CVD). Hwang J; Kim M; Cha HY; Spencer MG; Lee JW J Nanosci Nanotechnol; 2014 Apr; 14(4):2979-83. PubMed ID: 24734720 [TBL] [Abstract][Full Text] [Related]
18. Encapsulating Chemically Doped Graphene via Atomic Layer Deposition. Black A; Urbanos FJ; Osorio MR; Miranda R; Vázquez de Parga AL; Granados D ACS Appl Mater Interfaces; 2018 Mar; 10(9):8190-8196. PubMed ID: 29461040 [TBL] [Abstract][Full Text] [Related]
19. Fermi-Level Modulation of Chemical Vapor Deposition-Grown Monolayer Graphene via Nanoparticles to Macromolecular Dopants. Singh AK; Singh AK; Sinha SRP ACS Omega; 2022 Jan; 7(1):744-751. PubMed ID: 35036740 [TBL] [Abstract][Full Text] [Related]
20. Modulating the charge-transfer enhancement in GERS using an electrical field under vacuum and an n/p-doping atmosphere. Xu H; Chen Y; Xu W; Zhang H; Kong J; Dresselhaus MS; Zhang J Small; 2011 Oct; 7(20):2945-52. PubMed ID: 21901822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]