BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27877855)

  • 1. Plastic accommodation at homophase interfaces between nanotwinned and recrystallized grains in an austenitic duplex-microstructured steel.
    Gutierrez-Urrutia I; Archie F; Raabe D; Yan FK; Tao NR; Lu K
    Sci Technol Adv Mater; 2016; 17(1):29-36. PubMed ID: 27877855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain Evolution in Cold-Warm Forged Steel Components Studied by Means of EBSD Technique.
    Ferro P; Bonollo F; Bassan F; Berto F
    Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29258249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of microstructure evolution and martensite transformation developed in austenitic stainless steel subjected to a plastic strain gradient: A combination study of Mirco-XRD, EBSD, and ECCI techniques.
    Berahmand M; Ketabchi M; Jamshidian M; Tsurekawa S
    Micron; 2021 Apr; 143():103014. PubMed ID: 33549854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanical behavior of austenitic stainless steel with nano/ultrafine grains and comparison with micrometer austenitic grains counterpart and their biological functions.
    Gong N; Hu C; Hu B; An B; Misra RDK
    J Mech Behav Biomed Mater; 2020 Jan; 101():103433. PubMed ID: 31539734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Deformation Conditions on Strain-Induced Precipitation of 7Mo Super-Austenitic Stainless Steel.
    Xu S; He J; Zhang R; Zhang F; Wang X
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior Strength and Ductility of 304 Austenitic Stainless Steel with Gradient Dislocations.
    Pan Q; Guo S; Cui F; Jing L; Lu L
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Grain Size on the Plastic Deformation Behaviors of a Fe-18Mn-1.3Al-0.6C Austenitic Steel.
    Cui Z; He S; Tang J; Fu D; Teng J; Jiang F
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Annealing Temperature on Mechanical Properties and Work Hardening of Nickel-Saving Stainless Steel.
    Pei W; Yang S; Cao K; Zhao A
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Strain Rate on Hydrogen-Assisted Deformation Behavior and Microstructure in AISI 316L Austenitic Stainless Steel.
    Astafurova E; Fortuna A; Melnikov E; Astafurov S
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradient Microstructure Design in Stainless Steel: A Strategy for Uniting Strength-Ductility Synergy and Corrosion Resistance.
    He Q; Wei W; Wang MS; Guo FJ; Zhai Y; Wang YF; Huang CX
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of Dislocations and Stacking Faults in Embedded Individual Grains during In Situ Tensile Loading of an Austenitic Stainless Steel.
    Neding B; Pagan DC; Hektor J; Hedström P
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of 40% Cold Working and Annealing on Precipitation in AISI 316L Austenitic Stainless Steel.
    Bártová K; Dománková M; Bárta J; Pastier P
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The significance of phase reversion-induced nanograined/ultrafine-grained structure on the load-controlled deformation response and related mechanism in copper-bearing austenitic stainless steel.
    Hu CY; Somani MC; Misra RDK; Yang CG
    J Mech Behav Biomed Mater; 2020 Apr; 104():103666. PubMed ID: 32174424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation of Strain Path, Texture, Twinning, and Mechanical Properties in Twinning-Induced Plasticity Steel during Wire Drawing.
    Hwang JK
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32414215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparison of Amplitude-and Time-Dependent Cyclic Deformation Behavior for Fully-Austenite Stainless Steel 316L and Duplex Stainless Steel 2205.
    Li S; Jiang W; Xie X; Dong Z
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of Grain Interfaces in Annealed Duplex Stainless Steel after Parallel Cross Rolling and Direct Rolling.
    Wang M; Li H; Tian Y; Guo H; Fang X; Guo Y
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29772723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The significance of deformation mechanisms on the fracture behavior of phase reversion-induced nanostructured austenitic stainless steel.
    Misra RDK; Injeti VSY; Somani MC
    Sci Rep; 2018 May; 8(1):7908. PubMed ID: 29784921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement in Grain Size Distribution Uniformity for Nuclear-Grade Austenitic Stainless Steel through Thermomechanical Treatment.
    Wang Y; Xue W; Pang Z; Zhao Z; Liu Z; Liu C; Gao F; Li W
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructure Evolution of 316L Steel Prepared with the Use of Additive and Conventional Methods and Subjected to Dynamic Loads: A Comparative Study.
    Ziętala M; Durejko T; Panowicz R; Konarzewski M
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33142708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron Backscatter Diffraction and Transmission Kikuchi Diffraction Analysis of an Austenitic Stainless Steel Subjected to Surface Mechanical Attrition Treatment and Plasma Nitriding.
    Proust G; Retraint D; Chemkhi M; Roos A; Demangel C
    Microsc Microanal; 2015 Aug; 21(4):919-26. PubMed ID: 26139391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.