BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27877934)

  • 21. Control of molecular rotor rotational frequencies in porous coordination polymers using a solid-solution approach.
    Inukai M; Fukushima T; Hijikata Y; Ogiwara N; Horike S; Kitagawa S
    J Am Chem Soc; 2015 Sep; 137(38):12183-6. PubMed ID: 26368067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pore-Networked Soft Materials Based on Metal-Organic Polyhedra.
    Wang Z; Furukawa S
    Acc Chem Res; 2024 Feb; 57(3):327-337. PubMed ID: 38205789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unveiling thermal transitions of polymers in subnanometre pores.
    Uemura T; Yanai N; Watanabe S; Tanaka H; Numaguchi R; Miyahara MT; Ohta Y; Nagaoka M; Kitagawa S
    Nat Commun; 2010 Oct; 1(7):83. PubMed ID: 20981011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Achieving High Performance Metal-Organic Framework Materials through Pore Engineering.
    Lin RB; Zhang Z; Chen B
    Acc Chem Res; 2021 Sep; 54(17):3362-3376. PubMed ID: 34399577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation of Porous Liquid Based on Silicalite-1.
    Liu Y; Bai Y; Tian T
    Materials (Basel); 2019 Dec; 12(23):. PubMed ID: 31805649
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coordination Polymers Constructed from Pyrogallol[4]arene-Assembled Metal-Organic Nanocapsules.
    Shao L; Hu X; Sikligar K; Baker GA; Atwood JL
    Acc Chem Res; 2021 Aug; 54(16):3191-3203. PubMed ID: 34329553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tailoring the separation properties of flexible metal-organic frameworks using mechanical pressure.
    Chanut N; Ghoufi A; Coulet MV; Bourrelly S; Kuchta B; Maurin G; Llewellyn PL
    Nat Commun; 2020 Mar; 11(1):1216. PubMed ID: 32139685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effective Separation of Enantiomers Based on Novel Chiral Hierarchical Porous Metal-Organic Gels.
    Ma Y; Li A; Gao X; Huang F; Kuang X; Yang P; Yue J; Tang B
    Macromol Rapid Commun; 2019 Apr; 40(8):e1800862. PubMed ID: 30758102
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reticular Chemistry for Highly Porous Metal-Organic Frameworks: The Chemistry and Applications.
    Chen Z; Kirlikovali KO; Li P; Farha OK
    Acc Chem Res; 2022 Feb; 55(4):579-591. PubMed ID: 35112832
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finely Controlled Stepwise Engineering of Pore Environments and Mechanistic Elucidation of Water-Stable, Flexible 2D Porous Coordination Polymers.
    Wang H; Cao H; Zheng JJ; Mathew S; Hosono N; Zhou B; Lyu H; Kusaka S; Jin W; Kitagawa S; Duan J
    Chemistry; 2018 Apr; 24(24):6412-6417. PubMed ID: 29419938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pore partition in two-dimensional covalent organic frameworks.
    Xu X; Wu X; Xu K; Xu H; Chen H; Huang N
    Nat Commun; 2023 Jun; 14(1):3360. PubMed ID: 37291160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Zeolites and metal-organic frameworks for gas separation: the possibility of translating adsorbents into membranes.
    Chen G; Liu G; Pan Y; Liu G; Gu X; Jin W; Xu N
    Chem Soc Rev; 2023 Jul; 52(14):4586-4602. PubMed ID: 37377411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer.
    Shimomura S; Higuchi M; Matsuda R; Yoneda K; Hijikata Y; Kubota Y; Mita Y; Kim J; Takata M; Kitagawa S
    Nat Chem; 2010 Aug; 2(8):633-7. PubMed ID: 20651724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A flexible interpenetrating coordination framework with a bimodal porous functionality.
    Maji TK; Matsuda R; Kitagawa S
    Nat Mater; 2007 Feb; 6(2):142-8. PubMed ID: 17259990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural gas purification using a porous coordination polymer with water and chemical stability.
    Duan J; Jin W; Krishna R
    Inorg Chem; 2015 May; 54(9):4279-84. PubMed ID: 25884592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fine Pore-Structure Engineering by Ligand Conformational Control of Naphthalene Diimide-Based Semiconducting Porous Coordination Polymers for Efficient Chemiresistive Gas Sensing.
    Xue Z; Zheng JJ; Nishiyama Y; Yao MS; Aoyama Y; Fan Z; Wang P; Kajiwara T; Kubota Y; Horike S; Otake KI; Kitagawa S
    Angew Chem Int Ed Engl; 2023 Jan; 62(2):e202215234. PubMed ID: 36377418
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitroxyl radical-containing flexible porous coordination polymer for controllable size-aelective aerobic oxidation of alcohols.
    Wang P; Xue Z; Ken-Ichi O; Kitagawa S
    Chem Commun (Camb); 2022 Aug; 58(64):9026-9029. PubMed ID: 35875985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a Porous Coordination Polymer with a High Gas Capacity Using a Thiophene-Based Bent Tetracarboxylate Ligand.
    Wang F; Kusaka S; Hijikata Y; Hosono N; Kitagawa S
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33455-33460. PubMed ID: 28426194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-Dimensional Porous Polymers: From Sandwich-like Structure to Layered Skeleton.
    Zhu J; Yang C; Lu C; Zhang F; Yuan Z; Zhuang X
    Acc Chem Res; 2018 Dec; 51(12):3191-3202. PubMed ID: 30411885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. polyMOFs: A Class of Interconvertible Polymer-Metal-Organic-Framework Hybrid Materials.
    Zhang Z; Nguyen HT; Miller SA; Cohen SM
    Angew Chem Int Ed Engl; 2015 May; 54(21):6152-7. PubMed ID: 25926022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.