These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 27877994)

  • 41. Intrinsic magnetoresistance of single-walled carbon nanotubes probed by a noncontact method.
    Oshima Y; Takenobu T; Yanagi K; Miyata Y; Kataura H; Hata K; Iwasa Y; Nojiri H
    Phys Rev Lett; 2010 Jan; 104(1):016803. PubMed ID: 20366380
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Facile and scalable route for highly efficient enrichment of semiconducting single-walled carbon nanotubes.
    Qiu H; Maeda Y; Akasaka T
    J Am Chem Soc; 2009 Nov; 131(45):16529-33. PubMed ID: 19860464
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective parallel integration of individual metallic single-walled carbon nanotubes from heterogeneous solutions.
    Burg BR; Schneider J; Bianco V; Schirmer NC; Poulikakos D
    Langmuir; 2010 Jul; 26(13):10419-24. PubMed ID: 20527829
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chemical vapor deposition synthesis of near-zigzag single-walled carbon nanotubes with stable tube-catalyst interface.
    Zhao Q; Xu Z; Hu Y; Ding F; Zhang J
    Sci Adv; 2016 May; 2(5):e1501729. PubMed ID: 27386532
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Designing Catalysts for Chirality-Selective Synthesis of Single-Walled Carbon Nanotubes: Past Success and Future Opportunity.
    He M; Zhang S; Wu Q; Xue H; Xin B; Wang D; Zhang J
    Adv Mater; 2019 Mar; 31(9):e1800805. PubMed ID: 30160811
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of ion bombardment on the synthesis of vertically aligned single-walled carbon nanotubes by plasma-enhanced chemical vapor deposition.
    Luo Z; Lim S; You Y; Miao J; Gong H; Zhang J; Wang S; Lin J; Shen Z
    Nanotechnology; 2008 Jun; 19(25):255607. PubMed ID: 21828659
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes.
    Jang S; Jang H; Lee Y; Suh D; Baik S; Hong BH; Ahn JH
    Nanotechnology; 2010 Oct; 21(42):425201. PubMed ID: 20858937
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of the structures of superlong oriented single-walled carbon nanotube arrays by electrodeposition of metal and Raman spectroscopy.
    Huang S; Qian Y; Chen J; Cai Q; Wan L; Wang S; Hu W
    J Am Chem Soc; 2008 Sep; 130(36):11860-1. PubMed ID: 18702491
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of peapods using substrate-grown SWNTs and DWNTs: an enabling step toward peapod devices.
    Chikkannanavar SB; Luzzi DE; Paulson S; Johnson AT
    Nano Lett; 2005 Jan; 5(1):151-5. PubMed ID: 15792430
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metallic Catalysts for Structure-Controlled Growth of Single-Walled Carbon Nanotubes.
    Li M; Liu X; Zhao X; Yang F; Wang X; Li Y
    Top Curr Chem (Cham); 2017 Apr; 375(2):29. PubMed ID: 28251565
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cobalt-filled apoferritin for suspended single-walled carbon nanotube growth with narrow diameter distribution.
    Jeong GH; Yamazaki A; Suzuki S; Yoshimura H; Kobayashi Y; Homma Y
    J Am Chem Soc; 2005 Jun; 127(23):8238-9. PubMed ID: 15941229
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tuning molecular orbitals in molecular electronics and spintronics.
    Kim WY; Kim KS
    Acc Chem Res; 2010 Jan; 43(1):111-20. PubMed ID: 19769353
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of high-density, large-diameter, and aligned single-walled carbon nanotubes by multiple-cycle growth methods.
    Zhou W; Ding L; Yang S; Liu J
    ACS Nano; 2011 May; 5(5):3849-57. PubMed ID: 21452858
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Noncovalent functionalization of single-walled carbon nanotubes.
    Zhao YL; Stoddart JF
    Acc Chem Res; 2009 Aug; 42(8):1161-71. PubMed ID: 19462997
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exciton energy transfer-assisted photoluminescence brightening from freestanding single-walled carbon nanotube bundles.
    Kato T; Hatakeyama R
    J Am Chem Soc; 2008 Jun; 130(25):8101-7. PubMed ID: 18512918
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mono-distributed single-walled carbon nanotube channel in field effect transistors (FETs) using electrostatic atomization deposition.
    Fam DW; Tok AI
    J Colloid Interface Sci; 2009 Oct; 338(1):266-9. PubMed ID: 19560779
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Direct synthesis of long single-walled carbon nanotube strands.
    Zhu HW; Xu CL; Wu DH; Wei BQ; Vajtai R; Ajayan PM
    Science; 2002 May; 296(5569):884-6. PubMed ID: 11988567
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single-walled carbon nanotube field-effect transistors with graphene oxide passivation for fast, sensitive, and selective protein detection.
    Chang J; Mao S; Zhang Y; Cui S; Steeber DA; Chen J
    Biosens Bioelectron; 2013 Apr; 42():186-92. PubMed ID: 23202350
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preferential growth of single-walled carbon nanotubes on silica spheres by chemical vapor deposition.
    Zhou W; Zhang Y; Li X; Yuan S; Jin Z; Xu J; Li Y
    J Phys Chem B; 2005 Apr; 109(15):6963-7. PubMed ID: 16851790
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Selective matching of catalyst element and carbon source in single-walled carbon nanotube synthesis on silicon substrates.
    Mizuno K; Hata K; Saito T; Ohshima S; Yumura M; Iijima S
    J Phys Chem B; 2005 Feb; 109(7):2632-7. PubMed ID: 16851268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.