These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27878094)

  • 21. The ins and outs of water dynamics in cold tolerant soil invertebrates.
    Holmstrup M
    J Therm Biol; 2014 Oct; 45():117-23. PubMed ID: 25436960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How crickets become freeze tolerant: The transcriptomic underpinnings of acclimation in Gryllus veletis.
    Toxopeus J; Des Marteaux LE; Sinclair BJ
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Mar; 29():55-66. PubMed ID: 30423515
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Repeated freezing induces oxidative stress and reduces survival in the freeze-tolerant goldenrod gall fly, Eurosta solidaginis.
    Doelling AR; Griffis N; Williams JB
    J Insect Physiol; 2014 Aug; 67():20-7. PubMed ID: 24910457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. To freeze or not to freeze? An evolutionary perspective on the cold-hardiness strategies of overwintering ectotherms.
    Voituron Y; Mouquet N; de Mazancourt C; Clobert J
    Am Nat; 2002 Aug; 160(2):255-70. PubMed ID: 18707491
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biological ice nucleation and ice distribution in cold-hardy ectothermic animals.
    Lee RE; Costanzo JP
    Annu Rev Physiol; 1998; 60():55-72. PubMed ID: 9558454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cooling rate and starvation affect supercooling point and cold tolerance of the Khapra beetle, Trogoderma granarium Everts fourth instar larvae (Coleoptera: Dermestidae).
    Mohammadzadeh M; Izadi H
    J Therm Biol; 2018 Jan; 71():24-31. PubMed ID: 29301697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reprint of: The ins and outs of water dynamics in cold tolerant soil invertebrates.
    Holmstrup M
    J Therm Biol; 2015 Dec; 54():30-6. PubMed ID: 26615724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Worldwide host plants of the highly polyphagous, invasive Epiphyas postvittana (Lepidoptera: Tortricidae).
    Brockerhoff EG; Suckling DM; Ecroyd CE; Wagstaff SJ; Raabe MC; Dowell RV; Wearings CH
    J Econ Entomol; 2011 Oct; 104(5):1514-24. PubMed ID: 22066180
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Freeze tolerance, supercooling points and ice formation: comparative studies on the subzero temperature survival of limno-terrestrial tardigrades.
    Hengherr S; Worland MR; Reuner A; Brümmer F; Schill RO
    J Exp Biol; 2009 Mar; 212(Pt 6):802-7. PubMed ID: 19251996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Autumn larval cold tolerance does not predict the northern range limit of a widespread butterfly species.
    Tremblay P; MacMillan HA; Kharouba HM
    Ecol Evol; 2021 Jun; 11(12):8332-8346. PubMed ID: 34188890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of differentially regulated micrornas in cold-hardy insects.
    Lyons PJ; Poitras JJ; Courteau LA; Storey KB; Morin P
    Cryo Letters; 2013; 34(1):83-9. PubMed ID: 23435712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The evolution of cold tolerance in Drosophila larvae.
    Strachan LA; Tarnowski-Garner HE; Marshall KE; Sinclair BJ
    Physiol Biochem Zool; 2011; 84(1):43-53. PubMed ID: 21050129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cold Tolerance of Pityophthorus juglandis (Coleoptera: Scolytidae) From Northern California.
    Hefty AR; Seybold SJ; Aukema BH; Venette RC
    Environ Entomol; 2017 Aug; 46(4):967-977. PubMed ID: 28510721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cold tolerance mechanisms of two arthropods from the Andean Range of Central Chile: Agathemera crassa (Insecta: Agathemeridae) and Euathlus condorito (Arachnida: Theraphosidae).
    Cubillos C; Cáceres JC; Villablanca C; Villarreal P; Baeza M; Cabrera R; Graether SP; Veloso C
    J Therm Biol; 2018 May; 74():133-139. PubMed ID: 29801618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ecologically relevant measures of the physiological tolerance of light brown apple moth, Epiphyas postvittana, to high temperature extremes.
    Bürgi LP; Mills NJ
    J Insect Physiol; 2012 Sep; 58(9):1184-91. PubMed ID: 22732234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conserved and narrow temperature limits in alpine insects: Thermal tolerance and supercooling points of the ice-crawlers, Grylloblatta (Insecta: Grylloblattodea: Grylloblattidae).
    Schoville SD; Slatyer RA; Bergdahl JC; Valdez GA
    J Insect Physiol; 2015 Jul; 78():55-61. PubMed ID: 25956197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function.
    Duman JG
    J Exp Biol; 2015 Jun; 218(Pt 12):1846-55. PubMed ID: 26085662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Genomics and Population Genomics of the Light Brown Apple Moth,
    Thrimawithana AH; Wu C; Christeller JT; Simpson RM; Hilario E; Tooman LK; Begum D; Jordan MD; Crowhurst R; Newcomb RD; Grapputo A
    Insects; 2022 Mar; 13(3):. PubMed ID: 35323562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal stress causes DNA damage and mortality in a tropical insect.
    Lubawy J; Daburon V; Chowański S; Słocińska M; Colinet H
    J Exp Biol; 2019 Nov; 222(Pt 23):. PubMed ID: 31672731
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epiphyas postvittana (Lepidoptera: Tortricidae)-Botrytis cinerea (Helotiales: Sclerotiniaceae)-Vitis vinifera (Vitales: Vitaceae) Interaction: The Role of B. cinerea on the Development of E. postvittana in Synthetic Nutritional Media.
    Rizvi SZ; Raman A
    J Econ Entomol; 2015 Aug; 108(4):1646-54. PubMed ID: 26470305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.