These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 27878145)

  • 1. Chiral nanoscale pores created during the surface explosion of tartaric acid on Cu(111).
    Therrien AJ; Lawton TJ; Mernoff B; Lucci FR; Pushkarev VV; Gellman AJ; Sykes EC
    Chem Commun (Camb); 2016 Dec; 52(99):14282-14285. PubMed ID: 27878145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superenantioselective chiral surface explosions.
    Gellman AJ; Huang Y; Feng X; Pushkarev VV; Holsclaw B; Mhatre BS
    J Am Chem Soc; 2013 Dec; 135(51):19208-14. PubMed ID: 24261645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral molecules adsorbed on a solid surface: Tartaric acid diastereomers and their surface explosion on Cu(111).
    Rieger A; Sax C; Bauert T; Wäckerlin C; Ernst KH
    Chirality; 2018 Apr; 30(4):369-377. PubMed ID: 29437251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Most Enantioselective Chiral Surface: Tartaric Acid on All Surfaces Vicinal to Cu(110).
    Karagoz B; Payne M; Reinicker A; Kondratyuk P; Gellman AJ
    Langmuir; 2019 Dec; 35(50):16438-16443. PubMed ID: 31729881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local and global chirality at surfaces: succinic acid versus tartaric acid on Cu110.
    Humblot V; Lorenzo MO; Baddeley CJ; Haq S; Raval R
    J Am Chem Soc; 2004 May; 126(20):6460-9. PubMed ID: 15149243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantiospecific Adsorption and Decomposition of D- and L-Asp Mixtures on Cu(643)
    Dutta S; Gellman AJ
    Chimia (Aarau); 2018 Jun; 72(6):404-410. PubMed ID: 29941077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral recognition in surface explosion.
    Behzadi B; Romer S; Fasel R; Ernst KH
    J Am Chem Soc; 2004 Aug; 126(30):9176-7. PubMed ID: 15281795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explosive enantiospecific decomposition of aspartic acid on Cu surfaces.
    Mhatre BS; Dutta S; Reinicker A; Karagoz B; Gellman AJ
    Chem Commun (Camb); 2016 Dec; 52(98):14125-14128. PubMed ID: 27868121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and coordination of tartaric acid enantiomers on Cu(111) in aqueous solution.
    Yan HJ; Wang D; Han MJ; Wan LJ; Bai CL
    Langmuir; 2004 Aug; 20(18):7360-4. PubMed ID: 15323474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemisorptive enantioselectivity of chiral epoxides on tartaric-acid modified Pd(111): three-point bonding.
    Mahapatra M; Tysoe WT
    Phys Chem Chem Phys; 2015 Feb; 17(7):5450-8. PubMed ID: 25615560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol.
    Liriano ML; Carrasco J; Lewis EA; Murphy CJ; Lawton TJ; Marcinkowski MD; Therrien AJ; Michaelides A; Sykes EC
    J Chem Phys; 2016 Mar; 144(9):094703. PubMed ID: 26957172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantiospecific Adsorption of Amino Acids on Naturally Chiral Cu{3,1,17}R&S Surfaces.
    Yun Y; Gellman AJ
    Langmuir; 2015 Jun; 31(22):6055-63. PubMed ID: 25933641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioselective surface chemistry of R-2-bromobutane on Cu(643)R&S and Cu(531)R&S.
    Rampulla DM; Francis AJ; Knight KS; Gellman AJ
    J Phys Chem B; 2006 Jun; 110(21):10411-20. PubMed ID: 16722747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantiospecific desorption of R- and S-propylene oxide from D- or L-lysine modified Cu(100) surfaces.
    Cheong WY; Gellman AJ
    Langmuir; 2012 Oct; 28(43):15251-62. PubMed ID: 23020648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface chirality of CuO thin films.
    Widmer R; Haug FJ; Ruffieux P; Gröning O; Bielmann M; Gröning P; Fasel R
    J Am Chem Soc; 2006 Nov; 128(43):14103-8. PubMed ID: 17061893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral SiO2 and Ag@SiO2 Materials Templated by Complexes Consisting of Comblike Polyethyleneimine and Tartaric Acid.
    Yao DD; Murata H; Tsunega S; Jin RH
    Chemistry; 2015 Oct; 21(44):15667-75. PubMed ID: 26350940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homochiral conglomerates and racemic crystals in two dimensions: tartaric acid on Cu(110).
    Romer S; Behzadi B; Fasel R; Ernst KH
    Chemistry; 2005 Jul; 11(14):4149-54. PubMed ID: 15861485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of enantiospecific chemisorption on chiral Cu surfaces vicinal to Cu(111) and Cu(100) using density functional theory.
    Bhatia B; Sholl DS
    J Chem Phys; 2008 Apr; 128(14):144709. PubMed ID: 18412473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules.
    Lorenzo MO; Baddeley CJ; Muryn C; Raval R
    Nature; 2000 Mar; 404(6776):376-9. PubMed ID: 10746721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct chiral resolution of tartaric acid by ion-pair capillary electrophoresis using an aqueous background electrolyte with (1R,2R)-(-)-1,2-diaminocyclohexane as a chiral counterion.
    Kodama S; Yamamoto A; Matsunaga A; Hayakawa K
    Electrophoresis; 2003 Aug; 24(15):2711-5. PubMed ID: 12900887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.