These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27878146)

  • 1. Acoustofluidic particle trapping, manipulation, and release using dynamic-mode cantilever sensors.
    Johnson BN; Mutharasan R
    Analyst; 2016 Dec; 142(1):123-131. PubMed ID: 27878146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosensing using dynamic-mode cantilever sensors: a review.
    Johnson BN; Mutharasan R
    Biosens Bioelectron; 2012 Feb; 32(1):1-18. PubMed ID: 22119230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Pumpless Acoustofluidic Platform for Size-Selective Concentration and Separation of Microparticles.
    Ahmed H; Destgeer G; Park J; Jung JH; Ahmad R; Park K; Sung HJ
    Anal Chem; 2017 Dec; 89(24):13575-13581. PubMed ID: 29156880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity of 2D Acoustofluidic Fields in an Ultrasonic Cavity Generated by Multiple Vibration Sources.
    Tang Q; Zhou S; Huang L; Chen Z
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31766721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming.
    Collins DJ; Khoo BL; Ma Z; Winkler A; Weser R; Schmidt H; Han J; Ai Y
    Lab Chip; 2017 May; 17(10):1769-1777. PubMed ID: 28394386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration.
    Destgeer G; Cho H; Ha BH; Jung JH; Park J; Sung HJ
    Lab Chip; 2016 Feb; 16(4):660-7. PubMed ID: 26755271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical piezoelectric-excited millimeter-sized cantilever (ePEMC) for simultaneous dual transduction biosensing.
    Johnson BN; Mutharasan R
    Analyst; 2013 Nov; 138(21):6365-71. PubMed ID: 24040646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfabricated acoustofluidic membrane acoustic waveguide actuator for highly localized in-droplet dynamic particle manipulation.
    Vachon P; Merugu S; Sharma J; Lal A; Ng EJ; Koh Y; Lee JE; Lee C
    Lab Chip; 2023 Mar; 23(7):1865-1878. PubMed ID: 36852544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of steady streaming for a particle manipulation system.
    Amit R; Abadi A; Kosa G
    Biomed Microdevices; 2016 Apr; 18(2):39. PubMed ID: 27108449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Torsional and lateral resonant modes of cantilevers as biosensors: alternatives to bending modes.
    Johnson BN; Sharma H; Mutharasan R
    Anal Chem; 2013 Feb; 85(3):1760-6. PubMed ID: 23276186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustofluidic black holes for multifunctional in-droplet particle manipulation.
    Liu P; Tian Z; Yang K; Naquin TD; Hao N; Huang H; Chen J; Ma Q; Bachman H; Zhang P; Xu X; Hu J; Huang TJ
    Sci Adv; 2022 Apr; 8(13):eabm2592. PubMed ID: 35363512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cavity-agnostic acoustofluidic manipulations enabled by guided flexural waves on a membrane acoustic waveguide actuator.
    Vachon P; Merugu S; Sharma J; Lal A; Ng EJ; Koh Y; Lee JE; Lee C
    Microsyst Nanoeng; 2024; 10():33. PubMed ID: 38463549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation-Based Design and Optimization of Rectangular Micro-Cantilever-Based Aerosols Mass Sensor.
    Xu F; Wei Y; Bian S; Wang H; Chen DR; Kong D
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31979192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategy toward Miniaturized, Self-out-Readable Resonant Cantilever and Integrated Electrostatic Microchannel Separator for Highly Sensitive Airborne Nanoparticle Detection.
    Bertke M; Xu J; Fahrbach M; Setiono A; Wasisto HS; Peiner E
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30795547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of flexural vibration mode of the rectangular atomic force microscope micro cantilevers in liquid to the surface stiffness variations.
    Farokh Payam A
    Ultramicroscopy; 2013 Dec; 135():84-8. PubMed ID: 23942312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sampling and Mass Detection of a Countable Number of Microparticles Using on-Cantilever Imprinting.
    Nyang'au WO; Setiono A; Schmidt A; Bosse H; Peiner E
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32354176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A MEMS Resonant Sensor to Measure Fluid Density and Viscosity under Flexural and Torsional Vibrating Modes.
    Zhao L; Hu Y; Wang T; Ding J; Liu X; Zhao Y; Jiang Z
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27275823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Performance of an Acoustofluidic Device by Integrating Temperature Control.
    Hashemiesfahan M; Gelin P; Maisto A; Gardeniers H; De Malsche W
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.