These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27878146)

  • 21. Acoustofluidic Diversity Achieved by Multiple Modes of Acoustic Waves Generated on Piezoelectric-Film-Coated Aluminum Sheets.
    Wang Y; Li X; Meng H; Tao R; Qian J; Fu C; Luo J; Xie J; Fu Y
    ACS Appl Mater Interfaces; 2024 Aug; 16(34):45119-45130. PubMed ID: 39143893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Geometrical Study on the Roof Tile-Shaped Modes in AlN-Based Piezoelectric Microcantilevers as Viscosity⁻Density Sensors.
    Ruiz-Díez V; Toledo J; Hernando-García J; Ababneh A; Seidel H; Sánchez-Rojas JL
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30736296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Liquid-phase chemical sensing using lateral mode resonant cantilevers.
    Beardslee LA; Demirci KS; Luzinova Y; Mizaikoff B; Heinrich SM; Josse F; Brand O
    Anal Chem; 2010 Sep; 82(18):7542-9. PubMed ID: 20715842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Versatile acoustic manipulation of micro-objects using mode-switchable oscillating bubbles: transportation, trapping, rotation, and revolution.
    Zhang W; Song B; Bai X; Jia L; Song L; Guo J; Feng L
    Lab Chip; 2021 Dec; 21(24):4760-4771. PubMed ID: 34632476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Actuation of higher harmonics in large arrays of micromechanical cantilevers for expanded resonant peak separation.
    Dick N; Wallin CB; Krylov S; Grutzik S; Ilic BR; Zehnder AT
    J Vib Acoust; 2018; 140():. PubMed ID: 31080325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A method of measuring Escherichia coli 0157:H7 at 1 cell/mL in 1 liter sample using antibody functionalized piezoelectric-excited millimeter-sized cantilever sensor.
    Campbell GA; Mutharasan R
    Environ Sci Technol; 2007 Mar; 41(5):1668-74. PubMed ID: 17396658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nano and Microsensors for Mammalian Cell Studies.
    Voiculescu I; Toda M; Inomata N; Ono T; Li F
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424372
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes.
    Zizys D; Gaidys R; Dauksevicius R; Ostasevicius V; Daniulaitis V
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. μ-'Diving suit' for liquid-phase high-Q resonant detection.
    Yu H; Chen Y; Xu P; Xu T; Bao Y; Li X
    Lab Chip; 2016 Mar; 16(5):902-10. PubMed ID: 26829920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-frequency flexural wave based microparticle manipulation.
    Bachman H; Gu Y; Rufo J; Yang S; Tian Z; Huang PH; Yu L; Huang TJ
    Lab Chip; 2020 Apr; 20(7):1281-1289. PubMed ID: 32154525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of nonspecific protein adsorption on cantilever biosensors caused by transverse resonant mode vibration.
    Johnson BN; Mutharasan R
    Analyst; 2014 Mar; 139(5):1112-20. PubMed ID: 24416758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanomechanical cantilever sensors as a novel tool for real-time monitoring and characterization of surface layer formation.
    Koeser J; Bammerlin M; Battiston FM; Hubler U
    J Nanosci Nanotechnol; 2010 Apr; 10(4):2578-82. PubMed ID: 20355466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of an elastic mass on frequency response characteristics of an ultra-thin piezoelectric micro-acoustic actuator.
    Kim HJ; Yang WS; No K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Aug; 60(8):1587-94. PubMed ID: 25004529
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Submicron Particle Concentration and Patterning with Ultralow Frequency Acoustic Vibration.
    Zhou Y; Ma Z; Ai Y
    Anal Chem; 2020 Oct; 92(19):12795-12800. PubMed ID: 32894949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Array-controlled ultrasonic manipulation of particles in planar acoustic resonator.
    Glynne-Jones P; Démoré CE; Ye C; Qiu Y; Cochran S; Hill M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1258-66. PubMed ID: 22718876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fiber-optic, cantilever-type acoustic motion velocity hydrophone.
    Cranch GA; Miller GA; Kirkendall CK
    J Acoust Soc Am; 2012 Jul; 132(1):103-14. PubMed ID: 22779459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave.
    Ma Z; Collins DJ; Ai Y
    Anal Chem; 2016 May; 88(10):5316-23. PubMed ID: 27086552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanomechanical gas sensing with nonlinear resonant cantilevers.
    Venstra WJ; Capener MJ; Elliott SR
    Nanotechnology; 2014 Oct; 25(42):425501. PubMed ID: 25267180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cantilever-Droplet-Based Sensing of Magnetic Particle Concentrations in Liquids.
    Nyang'au WO; Setiono A; Bertke M; Bosse H; Peiner E
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31683973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.