These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 27878196)

  • 1. Self-propelled round-trip motion of Janus particles in static line optical tweezers.
    Liu J; Guo HL; Li ZY
    Nanoscale; 2016 Dec; 8(47):19894-19900. PubMed ID: 27878196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Line optical tweezers as controllable micromachines: techniques and emerging trends.
    Shen Y; Weitz DA; Forde NR; Shayegan M
    Soft Matter; 2022 Jul; 18(29):5359-5365. PubMed ID: 35819100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward Understanding of Self-Electrophoretic Propulsion under Realistic Conditions: From Bulk Reactions to Confinement Effects.
    Kuron M; Kreissl P; Holm C
    Acc Chem Res; 2018 Dec; 51(12):2998-3005. PubMed ID: 30417644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical torque on microscopic objects.
    Parkin S; Knöner G; Singer W; Nieminen TA; Heckenberg NR; Rubinsztein-Dunlop H
    Methods Cell Biol; 2007; 82():525-61. PubMed ID: 17586271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.
    He L; Li H; Li M
    Sci Adv; 2016 Sep; 2(9):e1600485. PubMed ID: 27626072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Optically Driven Bistable Janus Rotor with Patterned Metal Coatings.
    Zong Y; Liu J; Liu R; Guo H; Yang M; Li Z; Chen K
    ACS Nano; 2015 Nov; 9(11):10844-51. PubMed ID: 26481901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helical paths, gravitaxis, and separation phenomena for mass-anisotropic self-propelling colloids: Experiment versus theory.
    Campbell AI; Wittkowski R; Ten Hagen B; Löwen H; Ebbens SJ
    J Chem Phys; 2017 Aug; 147(8):084905. PubMed ID: 28863518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled Mechanical Motions of Microparticles in Optical Tweezers.
    Liu J; Li Z
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of cap weight on the motion of a Janus particle very near a wall.
    Rashidi A; Razavi S; Wirth CL
    Phys Rev E; 2020 Apr; 101(4-1):042606. PubMed ID: 32422805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collective motion of chiral Brownian particles controlled by a circularly-polarized laser beam.
    Hernández RJ; Sevilla FJ; Mazzulla A; Pagliusi P; Pellizzi N; Cipparrone G
    Soft Matter; 2020 Sep; 16(33):7704-7714. PubMed ID: 32734983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translational and rotational dynamics of a self-propelled Janus probe in crowded environments.
    Theeyancheri L; Chaki S; Samanta N; Goswami R; Chelakkot R; Chakrabarti R
    Soft Matter; 2020 Sep; 16(36):8482-8491. PubMed ID: 32822444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remotely powered self-propelling particles and micropumps based on miniature diodes.
    Chang ST; Paunov VN; Petsev DN; Velev OD
    Nat Mater; 2007 Mar; 6(3):235-40. PubMed ID: 17293850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An opto-thermal approach for rotating a trapped core-shell magnetic microparticle with patchy shell.
    Bai W; Shao M; Zhou J; Zhao Q; Ji F; Zhong MC
    Rev Sci Instrum; 2022 Aug; 93(8):084902. PubMed ID: 36050094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of Self-Propelled Janus Particles in Viscoelastic Fluids.
    Gomez-Solano JR; Blokhuis A; Bechinger C
    Phys Rev Lett; 2016 Apr; 116(13):138301. PubMed ID: 27082004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wetting and orientation of catalytic Janus colloids at the surface of water.
    Wang X; In M; Blanc C; Malgaretti P; Nobili M; Stocco A
    Faraday Discuss; 2016 Oct; 191():305-324. PubMed ID: 27412240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully Steerable Symmetric Thermoplasmonic Microswimmers.
    Fränzl M; Muiños-Landin S; Holubec V; Cichos F
    ACS Nano; 2021 Feb; 15(2):3434-3440. PubMed ID: 33556235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic and continuum descriptions of Janus motor fluid flow fields.
    Reigh SY; Huang MJ; Schofield J; Kapral R
    Philos Trans A Math Phys Eng Sci; 2016 Nov; 374(2080):. PubMed ID: 27698037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer of 'pure' on-axis spin angular momentum to the absorptive particle using self-imaged bottle beam optical tweezers system.
    Ahluwalia B; Yuan X; Tao S
    Opt Express; 2004 Oct; 12(21):5172-7. PubMed ID: 19484074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selecting the swimming mechanisms of colloidal particles: bubble propulsion versus self-diffusiophoresis.
    Wang S; Wu N
    Langmuir; 2014 Apr; 30(12):3477-86. PubMed ID: 24593832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topologically enabled optical nanomotors.
    Ilic O; Kaminer I; Zhen B; Miller OD; Buljan H; Soljačić M
    Sci Adv; 2017 Jun; 3(6):e1602738. PubMed ID: 28695194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.