These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27878581)

  • 1. Magnesium aminoclay-based transformation of Paenibacillus riograndensis and Paenibacillus polymyxa and development of tools for gene expression.
    Brito LF; Irla M; Walter T; Wendisch VF
    Appl Microbiol Biotechnol; 2017 Jan; 101(2):735-747. PubMed ID: 27878581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete genome sequence of Paenibacillus riograndensis SBR5(T), a Gram-positive diazotrophic rhizobacterium.
    Brito LF; Bach E; Kalinowski J; Rückert C; Wibberg D; Passaglia LM; Wendisch VF
    J Biotechnol; 2015 Aug; 207():30-1. PubMed ID: 25959170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detailed transcriptome analysis of the plant growth promoting Paenibacillus riograndensis SBR5 by using RNA-seq technology.
    Brito LF; Irla M; Kalinowski J; Wendisch VF
    BMC Genomics; 2017 Nov; 18(1):846. PubMed ID: 29100491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Xylose Operon from
    Wang Z; Fang Y; Shi Y; Xin Y; Gu Z; Yang T; Li Y; Ding Z; Shi G; Zhang L
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to transform a recalcitrant Paenibacillus strain: From culture medium to restriction barrier.
    Bach E; de Carvalho Fernandes G; Passaglia LMP
    J Microbiol Methods; 2016 Dec; 131():135-143. PubMed ID: 27780731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant-growth promotion and competitiveness.
    Eastman AW; Heinrichs DE; Yuan ZC
    BMC Genomics; 2014 Oct; 15():851. PubMed ID: 25280501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two different restriction-modification systems for degrading exogenous DNA in Paenibacillus polymyxa.
    Shen M; Chen Z; Mao X; Wang L; Liang J; Huo Q; Yin X; Qiu J; Sun D
    Biochem Biophys Res Commun; 2018 Oct; 504(4):927-932. PubMed ID: 30224061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative nitrogenase and pseudogenes: unique features of the Paenibacillus riograndensis nitrogen fixation system.
    Fernandes Gde C; Trarbach LJ; de Campos SB; Beneduzi A; Passaglia LM
    Res Microbiol; 2014 Sep; 165(7):571-80. PubMed ID: 24956360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmating: conjugative transfer of a new broad host range expression vector to various Bacillus species using a single protocol.
    Heinze S; Kornberger P; Grätz C; Schwarz WH; Zverlov VV; Liebl W
    BMC Microbiol; 2018 Jun; 18(1):56. PubMed ID: 29884129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR interference-based gene repression in the plant growth promoter Paenibacillus sonchi genomovar Riograndensis SBR5.
    Brito LF; Schultenkämper K; Passaglia LMP; Wendisch VF
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):5095-5106. PubMed ID: 32274563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a native promoter P
    Li H; Ding Y; Zhao J; Ge R; Qiu B; Yang X; Yao L; Liu K; Wang C; Du B
    J Biotechnol; 2019 Apr; 295():19-27. PubMed ID: 30831123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Construction of gene knock-out system for Paenibacillus polymyxa SC2].
    Zhang W; Ding Y; Yao L; Liu K; Du B
    Wei Sheng Wu Xue Bao; 2013 Dec; 53(12):1258-66. PubMed ID: 24697098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Simplified Method for Gene Knockout and Direct Screening of Recombinant Clones for Application in Paenibacillus polymyxa.
    Kim SB; Timmusk S
    PLoS One; 2013; 8(6):e68092. PubMed ID: 23826364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Based Genetic Tool Development for
    Irla M; Heggeset TM; Nærdal I; Paul L; Haugen T; Le SB; Brautaset T; Wendisch VF
    Front Microbiol; 2016; 7():1481. PubMed ID: 27713731
    [No Abstract]   [Full Text] [Related]  

  • 15. Practical procedures for genetic manipulation systems for medermycin-producing Streptomyces sp. AM-7161.
    Huiqun D; Xiaofeng C; Jianxin P; Huazhu H; Koji I; Aiying L
    J Basic Microbiol; 2010 Jun; 50(3):299-301. PubMed ID: 20143353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the carbon and redox metabolism of Paenibacillus polymyxa for efficient isobutanol production.
    Meliawati M; Volke DC; Nikel PI; Schmid J
    Microb Biotechnol; 2024 Mar; 17(3):e14438. PubMed ID: 38529712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron deficiency resistance mechanisms enlightened by gene expression analysis in Paenibacillus riograndensis SBR5.
    Sperb ER; Tadra-Sfeir MZ; Sperotto RA; Fernandes Gde C; Pedrosa Fde O; de Souza EM; Passaglia LM
    Res Microbiol; 2016; 167(6):501-9. PubMed ID: 27130283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paenibacillus polymyxa, a Jack of all trades.
    Langendries S; Goormachtig S
    Environ Microbiol; 2021 Oct; 23(10):5659-5669. PubMed ID: 33684235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of replicative oriC plasmids and their versatile use in genetic manipulation of Cytophaga hutchinsonii.
    Xu Y; Ji X; Chen N; Li P; Liu W; Lu X
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):697-705. PubMed ID: 21935590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple bacterial transformation method using magnesium- and calcium-aminoclays.
    Choi HA; Lee YC; Lee JY; Shin HJ; Han HK; Kim GJ
    J Microbiol Methods; 2013 Nov; 95(2):97-101. PubMed ID: 23911572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.