These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 27878973)
1. Metabolite labelling reveals hierarchies in Clostridium acetobutylicum that selectively channel carbons from sugar mixtures towards biofuel precursors. Aristilde L Microb Biotechnol; 2017 Jan; 10(1):162-174. PubMed ID: 27878973 [TBL] [Abstract][Full Text] [Related]
2. Hierarchy in pentose sugar metabolism in Clostridium acetobutylicum. Aristilde L; Lewis IA; Park JO; Rabinowitz JD Appl Environ Microbiol; 2015 Feb; 81(4):1452-62. PubMed ID: 25527534 [TBL] [Abstract][Full Text] [Related]
3. Butanol production from hexoses and pentoses by fermentation of Clostridium acetobutylicum. Raganati F; Olivieri G; Götz P; Marzocchella A; Salatino P Anaerobe; 2015 Aug; 34():146-55. PubMed ID: 26026401 [TBL] [Abstract][Full Text] [Related]
4. The Thermoanaerobacter glycobiome reveals mechanisms of pentose and hexose co-utilization in bacteria. Lin L; Song H; Tu Q; Qin Y; Zhou A; Liu W; He Z; Zhou J; Xu J PLoS Genet; 2011 Oct; 7(10):e1002318. PubMed ID: 22022280 [TBL] [Abstract][Full Text] [Related]
5. Metabolite labelling as a tool to define hierarchies in Clostridium acetobutylicum sugar usage and its relevance for biofuel production. Hidalgo M; Puerta-Fernández E Microb Biotechnol; 2017 May; 10(3):525-527. PubMed ID: 28220690 [TBL] [Abstract][Full Text] [Related]
6. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica. Ryu S; Trinh CT Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499 [TBL] [Abstract][Full Text] [Related]
7. The Phosphotransferase System in Solventogenic Clostridia. Mitchell WJ J Mol Microbiol Biotechnol; 2015; 25(2-3):129-42. PubMed ID: 26159074 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum. Servinsky MD; Kiel JT; Dupuy NF; Sund CJ Microbiology (Reading); 2010 Nov; 156(Pt 11):3478-3491. PubMed ID: 20656779 [TBL] [Abstract][Full Text] [Related]
9. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Rodrussamee N; Lertwattanasakul N; Hirata K; Suprayogi ; Limtong S; Kosaka T; Yamada M Appl Microbiol Biotechnol; 2011 May; 90(4):1573-86. PubMed ID: 21476140 [TBL] [Abstract][Full Text] [Related]
10. Arabinose-Induced Catabolite Repression as a Mechanism for Pentose Hierarchy Control in Servinsky MD; Renberg RL; Perisin MA; Gerlach ES; Liu S; Sund CJ mSystems; 2018; 3(5):. PubMed ID: 30374459 [TBL] [Abstract][Full Text] [Related]
11. Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii. Nobre A; Lucas C; Leão C Appl Environ Microbiol; 1999 Aug; 65(8):3594-8. PubMed ID: 10427054 [TBL] [Abstract][Full Text] [Related]
12. Phosphoketolase flux in Clostridium acetobutylicum during growth on L-arabinose. Sund CJ; Liu S; Germane KL; Servinsky MD; Gerlach ES; Hurley MM Microbiology (Reading); 2015 Feb; 161(Pt 2):430-440. PubMed ID: 25481877 [TBL] [Abstract][Full Text] [Related]
13. Phosphoketolase pathway for xylose catabolism in Clostridium acetobutylicum revealed by 13C metabolic flux analysis. Liu L; Zhang L; Tang W; Gu Y; Hua Q; Yang S; Jiang W; Yang C J Bacteriol; 2012 Oct; 194(19):5413-22. PubMed ID: 22865845 [TBL] [Abstract][Full Text] [Related]
14. A Cyclic Metabolic Network in Pseudomonas protegens Pf-5 Prioritizes the Entner-Doudoroff Pathway and Exhibits Substrate Hierarchy during Carbohydrate Co-Utilization. Wilkes RA; Mendonca CM; Aristilde L Appl Environ Microbiol; 2019 Jan; 85(1):. PubMed ID: 30366991 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of Clostridium acetobutylicum for the production of butyl butyrate. Noh HJ; Woo JE; Lee SY; Jang YS Appl Microbiol Biotechnol; 2018 Oct; 102(19):8319-8327. PubMed ID: 30076425 [TBL] [Abstract][Full Text] [Related]
16. Elimination of carbon catabolite repression in Clostridium acetobutylicum--a journey toward simultaneous use of xylose and glucose. Bruder M; Moo-Young M; Chung DA; Chou CP Appl Microbiol Biotechnol; 2015 Sep; 99(18):7579-88. PubMed ID: 25981995 [TBL] [Abstract][Full Text] [Related]
17. Blocking hexose entry into glycolysis activates alternative metabolic conversion of these sugars and upregulates pentose metabolism in Aspergillus nidulans. Khosravi C; Battaglia E; Kun RS; Dalhuijsen S; Visser J; Aguilar-Pontes MV; Zhou M; Heyman HM; Kim YM; Baker SE; de Vries RP BMC Genomics; 2018 Mar; 19(1):214. PubMed ID: 29566661 [TBL] [Abstract][Full Text] [Related]
18. Cross-regulation among arabinose, xylose and rhamnose utilization systems in E. coli. Choudhury D; Saini S Lett Appl Microbiol; 2018 Feb; 66(2):132-137. PubMed ID: 29140539 [TBL] [Abstract][Full Text] [Related]
19. Concurrent metabolism of pentose and hexose sugars by the polyextremophile Alicyclobacillus acidocaldarius. Lee BD; Apel WA; DeVeaux LC; Sheridan PP J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1443-1458. PubMed ID: 28776272 [TBL] [Abstract][Full Text] [Related]
20. Fermentation of oxidized hexose derivatives by Clostridium acetobutylicum. Servinsky MD; Liu S; Gerlach ES; Germane KL; Sund CJ Microb Cell Fact; 2014 Sep; 13():139. PubMed ID: 25231163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]