These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27878983)

  • 1. Enzymatic Specific Production and Chemical Functionalization of Phenylpropanone Platform Monomers from Lignin.
    Ohta Y; Hasegawa R; Kurosawa K; Maeda AH; Koizumi T; Nishimura H; Okada H; Qu C; Saito K; Watanabe T; Hatada Y
    ChemSusChem; 2017 Jan; 10(2):425-433. PubMed ID: 27878983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the Interunit Bonds of Lignin Oligomers Released by Acid-Catalyzed Selective Solvolysis of Cryptomeria japonica and Eucalyptus globulus Woods via Thioacidolysis and 2D-NMR.
    Saito K; Kaiho A; Sakai R; Nishimura H; Okada H; Watanabe T
    J Agric Food Chem; 2016 Dec; 64(48):9152-9160. PubMed ID: 27806566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computationally Prospecting Potential Pathways from Lignin Monomers and Dimers toward Aromatic Compounds.
    Wang L; Maranas CD
    ACS Synth Biol; 2021 May; 10(5):1064-1076. PubMed ID: 33877818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The etherase system of Novosphingobium sp. MBES04 functions as a sensor of lignin fragments through phenylpropanone production to induce specific transcriptional responses.
    Kumagawa E; Katsumata M; Nishimura H; Watanabe T; Ishii S; Ohta Y
    Environ Microbiol Rep; 2024 Feb; 16(1):e13210. PubMed ID: 37950419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of six enzymes of a marine Novosphingobium converts the stereoisomers of β-O-4 lignin model dimers into the respective monomers.
    Ohta Y; Nishi S; Hasegawa R; Hatada Y
    Sci Rep; 2015 Oct; 5():15105. PubMed ID: 26477321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic treatment improves fast pyrolysis product selectivity of softwood and hardwood lignin.
    Wang L; Ni H; Zhang J; Shi Q; Zhang R; Yu H; Li M
    Sci Total Environ; 2020 May; 717():137241. PubMed ID: 32070898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-step biocatalytic depolymerization of lignin.
    Picart P; Liu H; Grande PM; Anders N; Zhu L; Klankermayer J; Leitner W; Domínguez de María P; Schwaneberg U; Schallmey A
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6277-6287. PubMed ID: 28634851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hardwood and softwood lignins from sulfite liquors: Structural characterization and valorization through depolymerization.
    Casimiro FM; Costa CAE; Vega-Aguilar C; Rodrigues AE
    Int J Biol Macromol; 2022 Aug; 215():272-279. PubMed ID: 35718152
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Gall DL; Kontur WS; Lan W; Kim H; Li Y; Ralph J; Donohue TJ; Noguera DR
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29180366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic and molecular properties of alkaliphilic and thermotolerant β-etherase from Altererythrobacter sp. B11.
    Kumagawa E; Katsumata M; Ohta Y
    Biosci Biotechnol Biochem; 2023 Sep; 87(10):1183-1192. PubMed ID: 37403406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of acetone-fractionated Kraft lignin molecular structure on surface adhesion to formaldehyde-based resins.
    Wibowo ES; Park BD
    Int J Biol Macromol; 2023 Jan; 225():1449-1461. PubMed ID: 36436598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Total utilization of lignin and carbohydrates in
    Chen X; Zhang K; Xiao LP; Sun RC; Song G
    Biotechnol Biofuels; 2020; 13():2. PubMed ID: 31921351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative cleavage of C-C bonds in lignin.
    Subbotina E; Rukkijakan T; Marquez-Medina MD; Yu X; Johnsson M; Samec JSM
    Nat Chem; 2021 Nov; 13(11):1118-1125. PubMed ID: 34556848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous enzymatic saccharification and comminution for the valorization of lignocellulosic biomass toward natural products.
    Navarro RR; Otsuka Y; Nojiri M; Ishizuka S; Nakamura M; Shikinaka K; Matsuo K; Sasaki K; Sasaki K; Kimbara K; Nakashimada Y; Kato J
    BMC Biotechnol; 2018 Dec; 18(1):79. PubMed ID: 30541521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From gene towards selective biomass valorization: bacterial β-etherases with catalytic activity on lignin-like polymers.
    Picart P; Müller C; Mottweiler J; Wiermans L; Bolm C; Domínguez de María P; Schallmey A
    ChemSusChem; 2014 Nov; 7(11):3164-71. PubMed ID: 25186983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-Pot Biocatalytic In Vivo Methylation-Hydroamination of Bioderived Lignin Monomers to Generate a Key Precursor to L-DOPA.
    Galman JL; Parmeggiani F; Seibt L; Birmingham WR; Turner NJ
    Angew Chem Int Ed Engl; 2022 Feb; 61(8):e202112855. PubMed ID: 34882925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directional synthesis of ethylbenzene through catalytic transformation of lignin.
    Fan M; Jiang P; Bi P; Deng S; Yan L; Zhai Q; Wang T; Li Q
    Bioresour Technol; 2013 Sep; 143():59-67. PubMed ID: 23777846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative polymerization of lignins by laccase in water-acetone mixture.
    Fiţigău IF; Peter F; Boeriu CG
    Acta Biochim Pol; 2013; 60(4):817-22. PubMed ID: 24432339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perspective on Lignin Oxidation: Advances, Challenges, and Future Directions.
    Vangeel T; Schutyser W; Renders T; Sels BF
    Top Curr Chem (Cham); 2018 Jul; 376(4):30. PubMed ID: 29974271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic Lignin Depolymerization to Aromatic Chemicals.
    Zhang C; Wang F
    Acc Chem Res; 2020 Feb; 53(2):470-484. PubMed ID: 31999099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.