These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 27879261)

  • 1. Limited linkages of aboveground and belowground phenology: A study in grape.
    Radville L; Bauerle TL; Comas LH; Marchetto KA; Lakso AN; Smart DR; Dunst RM; Eissenstat DM
    Am J Bot; 2016 Nov; 103(11):1897-1911. PubMed ID: 27879261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Root phenology in a changing climate.
    Radville L; McCormack ML; Post E; Eissenstat DM
    J Exp Bot; 2016 Jun; 67(12):3617-28. PubMed ID: 26931171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consequences of insect herbivory on grape fine root systems with different growth rates.
    Bauerle TL; Eissenstat DM; Granett J; Gardner DM; Smart DR
    Plant Cell Environ; 2007 Jul; 30(7):786-95. PubMed ID: 17547651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking belowground and aboveground phenology in two boreal forests in Northeast China.
    Du E; Fang J
    Oecologia; 2014 Nov; 176(3):883-92. PubMed ID: 25164492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States.
    Kimball KD; Davis ML; Weihrauch DM; Murray GL; Rancourt K
    Am J Bot; 2014 Sep; 101(9):1437-46. PubMed ID: 25253704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and temporal variability of cv. Tempranillo phenology and grape quality within the Ribera del Duero DO (Spain) and relationships with climate.
    Ramos MC; Jones GV; Yuste J
    Int J Biometeorol; 2015 Dec; 59(12):1849-60. PubMed ID: 25906047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are above- and below-ground phenology in sync?
    Abramoff RZ; Finzi AC
    New Phytol; 2015 Feb; 205(3):1054-61. PubMed ID: 25729805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variability in root production, phenology, and turnover rate among 12 temperate tree species.
    McCormack ML; Adams TS; Smithwick EA; Eissenstat DM
    Ecology; 2014 Aug; 95(8):2224-35. PubMed ID: 25230473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in root phenology and water depletion by an invasive grass explains persistence in a Mediterranean ecosystem.
    Phillips ML; McNellis BE; Allen MF; Allen EB
    Am J Bot; 2019 Sep; 106(9):1210-1218. PubMed ID: 31502242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.
    Iler AM; Inouye DW; Høye TT; Miller-Rushing AJ; Burkle LA; Johnston EB
    Glob Chang Biol; 2013 Aug; 19(8):2348-59. PubMed ID: 23640772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of phenology and biomass production of boreal fens to climate warming under different water-table level regimes.
    Mäkiranta P; Laiho R; Mehtätalo L; Straková P; Sormunen J; Minkkinen K; Penttilä T; Fritze H; Tuittila ES
    Glob Chang Biol; 2018 Mar; 24(3):944-956. PubMed ID: 28994163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of root phenology in ecotypes of Eriophorum vaginatum to transplantation and warming in the Arctic.
    Ma T; Parker T; Unger S; Gewirtzman J; Fetcher N; Moody ML; Tang J
    Sci Total Environ; 2022 Jan; 805():149926. PubMed ID: 34543789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Canopy and environmental control of root dynamics in a long-term study of Concord grape.
    Comas LH; Anderson LJ; Dunst RM; Lakso AN; Eissenstat DM
    New Phytol; 2005 Sep; 167(3):829-40. PubMed ID: 16101919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hidden season: growing season is 50% longer below than above ground along an arctic elevation gradient.
    Blume-Werry G; Wilson SD; Kreyling J; Milbau A
    New Phytol; 2016 Feb; 209(3):978-86. PubMed ID: 26390239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Root foraging in response to heterogeneous soil moisture in two grapevines that differ in potential growth rate.
    Bauerle TL; Smart DR; Bauerle WL; Stockert C; Eissenstat DM
    New Phytol; 2008; 179(3):857-866. PubMed ID: 18503506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.
    Cowles JM; Wragg PD; Wright AJ; Powers JS; Tilman D
    Glob Chang Biol; 2016 Feb; 22(2):741-9. PubMed ID: 26426698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing growth phenology of co-occurring deciduous and evergreen conifers exposed to drought.
    Swidrak I; Schuster R; Oberhuber W
    Flora; 2013 Dec; 208(10-12):609-17. PubMed ID: 24273375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of aboveground and belowground competition between grass and tree on elm seedlings growth in Horqin Sandy Land].
    Tang Y; Jiang DM; Chen Z; Toshio O
    Ying Yong Sheng Tai Xue Bao; 2011 Aug; 22(8):1955-60. PubMed ID: 22097353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid root responses of seedlings exposed to a postdrought water pulse.
    Nguyen MA; Larson JE; Blair MD; Hardwick DD; Khurana N; Kim JS; Rosenfield MV; Funk JL
    Am J Bot; 2017 Dec; 104(12):1816-1824. PubMed ID: 29167156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detrending phenological time series improves climate-phenology analyses and reveals evidence of plasticity.
    Iler AM; Inouye DW; Schmidt NM; Høye TT
    Ecology; 2017 Mar; 98(3):647-655. PubMed ID: 27984645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.