BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 27879395)

  • 1. A computationally identified compound antagonizes excess FGF-23 signaling in renal tubules and a mouse model of hypophosphatemia.
    Xiao Z; Riccardi D; Velazquez HA; Chin AL; Yates CR; Carrick JD; Smith JC; Baudry J; Quarles LD
    Sci Signal; 2016 Nov; 9(455):ra113. PubMed ID: 27879395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibroblast growth factor 23 and α-Klotho co-dependent and independent functions.
    Quarles LD
    Curr Opin Nephrol Hypertens; 2019 Jan; 28(1):16-25. PubMed ID: 30451736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Small-Molecule Inhibitors of Fibroblast Growth Factor 23 Signaling via In Silico Hot Spot Prediction and Molecular Docking to α-Klotho.
    Liu SH; Xiao Z; Mishra SK; Mitchell JC; Smith JC; Quarles LD; Petridis L
    J Chem Inf Model; 2022 Aug; 62(15):3627-3637. PubMed ID: 35868851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FGF23 Neutralizing Antibody Ameliorates Hypophosphatemia and Impaired FGF Receptor Signaling in Kidneys of HMWFGF2 Transgenic Mice.
    Du E; Xiao L; Hurley MM
    J Cell Physiol; 2017 Mar; 232(3):610-616. PubMed ID: 27306296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation.
    Goetz R; Nakada Y; Hu MC; Kurosu H; Wang L; Nakatani T; Shi M; Eliseenkova AV; Razzaque MS; Moe OW; Kuro-o M; Mohammadi M
    Proc Natl Acad Sci U S A; 2010 Jan; 107(1):407-12. PubMed ID: 19966287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FGF receptors control vitamin D and phosphate homeostasis by mediating renal FGF-23 signaling and regulating FGF-23 expression in bone.
    Wöhrle S; Bonny O; Beluch N; Gaulis S; Stamm C; Scheibler M; Müller M; Kinzel B; Thuery A; Brueggen J; Hynes NE; Sellers WR; Hofmann F; Graus-Porta D
    J Bone Miner Res; 2011 Oct; 26(10):2486-97. PubMed ID: 21812026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and development of FGF-23 antagonists: Definition of the pharmacophore and initial structure-activity relationships probed by synthetic analogues.
    Downs RP; Xiao Z; Ikedionwu MO; Cleveland JW; Lin Chin A; Cafferty AE; Darryl Quarles L; Carrick JD
    Bioorg Med Chem; 2021 Jan; 29():115877. PubMed ID: 33232874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1alpha-hydroxylase expression in vitro.
    Perwad F; Zhang MY; Tenenhouse HS; Portale AA
    Am J Physiol Renal Physiol; 2007 Nov; 293(5):F1577-83. PubMed ID: 17699549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple faces of fibroblast growth factor-23.
    Han X; Quarles LD
    Curr Opin Nephrol Hypertens; 2016 Jul; 25(4):333-42. PubMed ID: 27219044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of phosphate transport by fibroblast growth factor 23 (FGF23): implications for disorders of phosphate metabolism.
    Gattineni J; Baum M
    Pediatr Nephrol; 2010 Apr; 25(4):591-601. PubMed ID: 19669798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Bone and Calcium Research Update 2015. Novel treatment for FGF23-related hypophosphatemic diseases].
    Fukumoto S
    Clin Calcium; 2015 Jan; 25(1):37-44. PubMed ID: 25530521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FGFR Inhibitor Ameliorates Hypophosphatemia and Impaired Engrailed-1/Wnt Signaling in FGF2 High Molecular Weight Isoform Transgenic Mice.
    Du E; Xiao L; Hurley MM
    J Cell Biochem; 2016 Sep; 117(9):1991-2000. PubMed ID: 26762209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets.
    Wöhrle S; Henninger C; Bonny O; Thuery A; Beluch N; Hynes NE; Guagnano V; Sellers WR; Hofmann F; Kneissel M; Graus Porta D
    J Bone Miner Res; 2013 Apr; 28(4):899-911. PubMed ID: 23129509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of A Cell-Based Assay to Identify Small Molecule Inhibitors of FGF23 Signaling.
    Diener S; Schorpp K; Strom TM; Hadian K; Lorenz-Depiereux B
    Assay Drug Dev Technol; 2015 Oct; 13(8):476-87. PubMed ID: 26461432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-Linked Hypophosphatemia and FGF23-Related Hypophosphatemic Diseases: Prospect for New Treatment.
    Kinoshita Y; Fukumoto S
    Endocr Rev; 2018 Jun; 39(3):274-291. PubMed ID: 29381780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central role of the proximal tubular αKlotho/FGF receptor complex in FGF23-regulated phosphate and vitamin D metabolism.
    Takeshita A; Kawakami K; Furushima K; Miyajima M; Sakaguchi K
    Sci Rep; 2018 May; 8(1):6917. PubMed ID: 29720668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of fibroblast growth factor-23 on phosphate transport in proximal tubules.
    Baum M; Schiavi S; Dwarakanath V; Quigley R
    Kidney Int; 2005 Sep; 68(3):1148-53. PubMed ID: 16105045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FGF23 and Bone and Mineral Metabolism.
    Fukumoto S
    Handb Exp Pharmacol; 2020; 262():281-308. PubMed ID: 31792685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibody-mediated activation of FGFR1 induces FGF23 production and hypophosphatemia.
    Wu AL; Feng B; Chen MZ; Kolumam G; Zavala-Solorio J; Wyatt SK; Gandham VD; Carano RA; Sonoda J
    PLoS One; 2013; 8(2):e57322. PubMed ID: 23451204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteocyte-specific deletion of Fgfr1 suppresses FGF23.
    Xiao Z; Huang J; Cao L; Liang Y; Han X; Quarles LD
    PLoS One; 2014; 9(8):e104154. PubMed ID: 25089825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.