These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 27879431)

  • 1. Efficient in situ detection of mRNAs using the Chlorella virus DNA ligase for padlock probe ligation.
    Schneider N; Meier M
    RNA; 2017 Feb; 23(2):250-256. PubMed ID: 27879431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chimeric padlock and iLock probes for increased efficiency of targeted RNA detection.
    Krzywkowski T; Kühnemund M; Nilsson M
    RNA; 2019 Jan; 25(1):82-89. PubMed ID: 30309880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fidelity of RNA templated end-joining by chlorella virus DNA ligase and a novel iLock assay with improved direct RNA detection accuracy.
    Krzywkowski T; Nilsson M
    Nucleic Acids Res; 2017 Oct; 45(18):e161. PubMed ID: 29048593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive and specific miRNA detection method using SplintR Ligase.
    Jin J; Vaud S; Zhelkovsky AM; Posfai J; McReynolds LA
    Nucleic Acids Res; 2016 Jul; 44(13):e116. PubMed ID: 27154271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Single-Molecule RNA Genotyping Using Padlock Probes and Rolling Circle Amplification.
    Krzywkowski T; Hauling T; Nilsson M
    Methods Mol Biol; 2017; 1492():59-76. PubMed ID: 27822856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-nucleotide sequence discrimination in situ using padlock probes.
    Nilsson M; Landegren U; Antson DO
    Curr Protoc Hum Genet; 2002 Nov; Chapter 4():Unit 4.11. PubMed ID: 18428329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of short repeated genomic sequences on metaphase chromosomes using padlock probes and target primed rolling circle DNA synthesis.
    Lohmann JS; Stougaard M; Koch J
    BMC Mol Biol; 2007 Nov; 8():103. PubMed ID: 17997865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Detection of single base polymorphism in p53 gene by ligase detection reaction and rolling circle amplification on microarrays].
    Kashkin KN; Strizhkov BN; Griadunov DA; Surzhikov SA; Grechishnikova IV; Kreĭndlin EIa; Chupeeva VV; Evseev KB; Turygin AIu; Mirzabekov AD
    Mol Biol (Mosk); 2005; 39(1):30-9. PubMed ID: 15773545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lock and roll: single-molecule genotyping in situ using padlock probes and rolling-circle amplification.
    Nilsson M
    Histochem Cell Biol; 2006 Aug; 126(2):159-64. PubMed ID: 16807721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-nucleotide sequence discrimination in situ using padlock probes.
    Nilsson M; Landegren U; Antson DO
    Curr Protoc Cytom; 2001 May; Chapter 8():Unit 8.8. PubMed ID: 18770746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Making ends meet in genetic analysis using padlock probes.
    Nilsson M; Banér J; Mendel-Hartvig M; Dahl F; Antson DO; Gullberg M; Landegren U
    Hum Mutat; 2002 Apr; 19(4):410-5. PubMed ID: 11933195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competitive Assays of Label-Free DNA Hybridization with Single-Molecule Fluorescence Imaging Detection.
    Peterson EM; Manhart MW; Harris JM
    Anal Chem; 2016 Jun; 88(12):6410-7. PubMed ID: 27203690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Padlock Probes to Detect Single Nucleotide Polymorphisms.
    Krzywkowski T; Nilsson M
    Methods Mol Biol; 2018; 1649():209-229. PubMed ID: 29130200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SCRINSHOT enables spatial mapping of cell states in tissue sections with single-cell resolution.
    Sountoulidis A; Liontos A; Nguyen HP; Firsova AB; Fysikopoulos A; Qian X; Seeger W; Sundström E; Nilsson M; Samakovlis C
    PLoS Biol; 2020 Nov; 18(11):e3000675. PubMed ID: 33216742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient DNA ligation in DNA-RNA hybrid helices by Chlorella virus DNA ligase.
    Lohman GJ; Zhang Y; Zhelkovsky AM; Cantor EJ; Evans TC
    Nucleic Acids Res; 2014 Feb; 42(3):1831-44. PubMed ID: 24203707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal aptameric system for highly sensitive detection of protein based on structure-switching-triggered rolling circle amplification.
    Wu ZS; Zhang S; Zhou H; Shen GL; Yu R
    Anal Chem; 2010 Mar; 82(6):2221-7. PubMed ID: 20151715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Single-Cell
    Krzywkowski T; Ciftci S; Assadian F; Nilsson M; Punga T
    J Virol; 2017 Jun; 91(11):. PubMed ID: 28298601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplex and quantifiable detection of nucleic acid from pathogenic fungi using padlock probes, generic real time PCR and specific suspension array readout.
    Eriksson R; Jobs M; Ekstrand C; Ullberg M; Herrmann B; Landegren U; Nilsson M; Blomberg J
    J Microbiol Methods; 2009 Aug; 78(2):195-202. PubMed ID: 19490930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specificity and fidelity of strand joining by Chlorella virus DNA ligase.
    Sriskanda V; Shuman S
    Nucleic Acids Res; 1998 Aug; 26(15):3536-41. PubMed ID: 9671815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general strategy for highly sensitive analysis of genetic biomarkers at single-base resolution with ligase-based isothermally exponential amplification.
    Wang H; Wang H; Sun Y; Liu X; Liu Y; Wang C; Zhang P; Li Z
    Talanta; 2020 May; 212():120754. PubMed ID: 32113533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.