These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 27879634)

  • 1. Expanding the Detection of Traversable Area with RealSense for the Visually Impaired.
    Yang K; Wang K; Hu W; Bai J
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27879634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing the minimum range of a RGB-depth sensor to aid navigation in visually impaired individuals.
    Yang K; Wang K; Chen H; Bai J
    Appl Opt; 2018 Apr; 57(11):2809-2819. PubMed ID: 29714283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting Traversable Area and Water Hazards for the Visually Impaired with a pRGB-D Sensor.
    Yang K; Wang K; Cheng R; Hu W; Huang X; Bai J
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28817069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unifying Terrain Awareness for the Visually Impaired through Real-Time Semantic Segmentation.
    Yang K; Wang K; Bergasa LM; Romera E; Hu W; Sun D; Sun J; Cheng R; Chen T; López E
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29748508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustifying semantic cognition of traversability across wearable RGB-depth cameras.
    Yang K; Bergasa LM; Romera E; Wang K
    Appl Opt; 2019 Apr; 58(12):3141-3155. PubMed ID: 31044789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unifying obstacle detection, recognition, and fusion based on millimeter wave radar and RGB-depth sensors for the visually impaired.
    Long N; Wang K; Cheng R; Hu W; Yang K
    Rev Sci Instrum; 2019 Apr; 90(4):044102. PubMed ID: 31042998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Wearable Navigation Device for Visually Impaired People Based on the Real-Time Semantic Visual SLAM System.
    Chen Z; Liu X; Kojima M; Huang Q; Arai T
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assisting the visually impaired: obstacle detection and warning system by acoustic feedback.
    Rodríguez A; Yebes JJ; Alcantarilla PF; Bergasa LM; Almazán J; Cela A
    Sensors (Basel); 2012 Dec; 12(12):17476-96. PubMed ID: 23247413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced RGB-D Mapping Method for Detailed 3D Indoor and Outdoor Modeling.
    Tang S; Zhu Q; Chen W; Darwish W; Wu B; Hu H; Chen M
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27690028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Object detection and recognition: using deep learning to assist the visually impaired.
    Bhandari A; Prasad PWC; Alsadoon A; Maag A
    Disabil Rehabil Assist Technol; 2021 Apr; 16(3):280-288. PubMed ID: 31694420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-obstacle aware smart navigation system for visually impaired people in fog connected IoT-cloud environment.
    Mueen A; Awedh M; Zafar B
    Health Informatics J; 2022; 28(3):14604582221112609. PubMed ID: 35801559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Obstacle Segmentation with Encoder-Decoder Architectures in Low Structured Environments for the Navigation of Visually Impaired People.
    Sessner J; Schade F; Franke J
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4269-4273. PubMed ID: 36085946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vision-based Mobile Indoor Assistive Navigation Aid for Blind People.
    Li B; Muñoz JP; Rong X; Chen Q; Xiao J; Tian Y; Arditi A; Yousuf M
    IEEE Trans Mob Comput; 2019 Mar; 18(3):702-714. PubMed ID: 30774566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Texture Synthesis Repair of RealSense D435i Depth Images with Object-Oriented RGB Image Segmentation.
    Zhang L; Xia H; Qiao Y
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Traversable Region Detection and Tracking for a Sparse 3D Laser Scanner for Off-Road Environments Using Range Images.
    An J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weakly-Supervised Recommended Traversable Area Segmentation Using Automatically Labeled Images for Autonomous Driving in Pedestrian Environment with No Edges.
    Onozuka Y; Matsumi R; Shino M
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An embarrassingly simple approach for visual navigation of forest environments.
    Niu C; Newlands C; Zauner KP; Tarapore D
    Front Robot AI; 2023; 10():1086798. PubMed ID: 37448877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Experimental Assessment of Depth Estimation in Transparent and Translucent Scenes for Intel RealSense D415, SR305 and L515.
    Curto E; Araujo H
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electronic travel guide for visually impaired - vehicle board recognition system through computer vision techniques.
    Noorjahan M; Punitha A
    Disabil Rehabil Assist Technol; 2020 Feb; 15(2):238-241. PubMed ID: 30856030
    [No Abstract]   [Full Text] [Related]  

  • 20. Simple Smartphone-Based Guiding System for Visually Impaired People.
    Lin BS; Lee CC; Chiang PY
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28608811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.