These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27879688)

  • 1. IEEE 802.11ah: A Technology to Face the IoT Challenge.
    Baños-Gonzalez V; Afaqui MS; Lopez-Aguilera E; Garcia-Villegas E
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27879688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Authentication and Key Management Mechanism for Resource Constrained Devices in IEEE 802.11-based IoT Access Networks.
    Kim KW; Han YH; Min SG
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28934152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resource Management for Massive Internet of Things in IEEE 802.11ah WLAN: Potentials, Current Solutions, and Open Challenges.
    Farhad A; Pyun JY
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CA-CWA: Channel-Aware Contention Window Adaption in IEEE 802.11ah for Soft Real-Time Industrial Applications.
    Cheng Y; Zhou H; Yang D
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31288387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance Evaluation of IEEE 802.11ah Networks With High-Throughput Bidirectional Traffic.
    Šljivo A; Kerkhove D; Tian L; Famaey J; Munteanu A; Moerman I; Hoebeke J; De Poorter E
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29360798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Survey on Energy Conserving Mechanisms for the Internet of Things: Wireless Networking Aspects.
    Abbas Z; Yoon W
    Sensors (Basel); 2015 Sep; 15(10):24818-47. PubMed ID: 26404275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Analytical Model for the Aggregate Throughput of IEEE 802.11ah Networks under the Restricted Access Window Mechanism.
    Soares SM; Carvalho MM
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Algorithm-Based Grouping Strategy for IEEE 802.11ah Networks.
    Garcia-Villegas E; Lopez-Garcia A; Lopez-Aguilera E
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Station Grouping under Dynamic Traffic for IEEE 802.11ah.
    Tian L; Khorov E; Latré S; Famaey J
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28677617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple Access Control for Cognitive Radio-Based IEEE 802.11ah Networks.
    Shafiq M; Ahmad M; Irshad A; Gohar M; Usman M; Khalil Afzal M; Choi JG; Yu H
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29949927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate Energy Modeling and Characterization of IEEE 802.11ah RAW and TWT.
    Santi S; Tian L; Khorov E; Famaey J
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31181808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selfish Behavior in IEEE 802.11ah Networks: A Detection Algorithm and Mitigation Strategies.
    Georgiev Y; Verhoeven R; Meratnia N
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Experimental Field Comparison of Wi-Fi HaLow and LoRa for the Smart Grid.
    Kane L; Liu V; McKague M; Walker G
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interference-Aware Adaptive Beam Alignment for Hyper-Dense IEEE 802.11ax Internet-of-Things Networks.
    Kwon D; Kim SW; Kim J; Mohaisen A
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30304788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Reinforcement Learning for Optimizing Restricted Access Window in IEEE 802.11ah MAC Layer.
    Jiang X; Gong S; Deng C; Li L; Gu B
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model of a Device-Level Combined Wireless Network Based on NB-IoT and IEEE 802.15.4 Standards for Low-Power Applications in a Diverse IoT Framework.
    García-Martín JP; Torralba A
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survey on Wireless Technology Trade-Offs for the Industrial Internet of Things.
    Seferagić A; Famaey J; De Poorter E; Hoebeke J
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31952214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An energy-efficient transmission scheme for real-time data in wireless sensor networks.
    Kim JW; Barrado JR; Jeon DK
    Sensors (Basel); 2015 May; 15(5):11628-52. PubMed ID: 26007722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time and Energy Efficient Relay Transmission for Multi-Hop Wireless Sensor Networks.
    Kim JW; Barrado JR; Jeon DK
    Sensors (Basel); 2016 Jun; 16(7):. PubMed ID: 27355952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IoT-Based Services and Applications for Mental Health in the Literature.
    de la Torre Díez I; Alonso SG; Hamrioui S; Cruz EM; Nozaleda LM; Franco MA
    J Med Syst; 2018 Dec; 43(1):11. PubMed ID: 30519972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.