These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27879774)

  • 1. Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM) Fuel Cell with Micro Parallel Flow Field.
    Lee PH; Han SS; Hwang SS
    Sensors (Basel); 2008 Mar; 8(3):1475-1487. PubMed ID: 27879774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels.
    Lee PH; Hwang SS
    Sensors (Basel); 2009; 9(11):9104-21. PubMed ID: 22291556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Investigation on the Anode Flow Field Design for an Air-Cooled Open-Cathode Proton Exchange Membrane Fuel Cell.
    Deng Z; Li B; Xing S; Zhao C; Wang H
    Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs - Review.
    Marappan M; Palaniswamy K; Velumani T; Chul KB; Velayutham R; Shivakumar P; Sundaram S
    Chem Rec; 2021 Apr; 21(4):663-714. PubMed ID: 33543591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional multiphysics coupling numerical simulation of a proton conductor solid oxide fuel cell based on multi-defect transport.
    Li Q; Sun X; Shen L; Li G
    Phys Chem Chem Phys; 2023 Mar; 25(10):7154-7169. PubMed ID: 36810664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor.
    Lee CY; Weng FB; Kuo YW; Tsai CH; Cheng YT; Cheng CK; Lin JT
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27763559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells.
    Wang C; Zhang Q; Shen S; Yan X; Zhu F; Cheng X; Zhang J
    Sci Rep; 2017 Mar; 7():43447. PubMed ID: 28251983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of interfacial water transport resistance on coupled proton and water transport across Nafion.
    Cheah MJ; Kevrekidis IG; Benziger J
    J Phys Chem B; 2011 Sep; 115(34):10239-50. PubMed ID: 21780814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the distribution of water in a self-humidifying H2/O2 proton-exchange membrane fuel cell using 1H NMR microscopy.
    Feindel KW; Bergens SH; Wasylishen RE
    J Am Chem Soc; 2006 Nov; 128(43):14192-9. PubMed ID: 17061904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the Proton-Conductive Membrane in Practical Polymer Electrolyte Membrane Fuel Cell (PEMFC) Simulation: A Review.
    Dickinson EJF; Smith G
    Membranes (Basel); 2020 Oct; 10(11):. PubMed ID: 33126688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Snowflake Bionic Flow Channel Design to Optimize the Pressure Drop and Flow Uniform of Proton Exchange Membrane Fuel Cells.
    Li Y; Bi J; Tang M; Lu G
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ultrathin self-humidifying membrane for PEM fuel cell application: fabrication, characterization, and experimental analysis.
    Zhu X; Zhang H; Zhang Y; Liang Y; Wang X; Yi B
    J Phys Chem B; 2006 Jul; 110(29):14240-8. PubMed ID: 16854127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of humidification of reactive gases on the performance of a proton exchange membrane fuel cell.
    Wilberforce T; Ijaodola O; Khatib FN; Ogungbemi EO; El Hassan Z; Thompson J; Olabi AG
    Sci Total Environ; 2019 Oct; 688():1016-1035. PubMed ID: 31726535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Cathode Channel Parameters and Fan Duty Ratio on Low Power Forced-Convection Open-Cathode Proton Exchange Membrane Fuel Cell Stack.
    Zhou J; Deng H; Xue R; Zhang Y
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion Transport Characteristics in Membranes for Direct Formate Fuel Cells.
    Su X; Pan Z; An L
    Front Chem; 2020; 8():765. PubMed ID: 33110909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesostructured platinum-free anode and carbon-free cathode catalysts for durable proton exchange membrane fuel cells.
    Cui X; Shi J; Wang Y; Chen Y; Zhang L; Hua Z
    ChemSusChem; 2014 Jan; 7(1):135-45. PubMed ID: 24382829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells.
    Oh SE; Logan BE
    Appl Microbiol Biotechnol; 2006 Mar; 70(2):162-9. PubMed ID: 16167143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.
    Butler CS; Nerenberg R
    Appl Microbiol Biotechnol; 2010 May; 86(5):1399-408. PubMed ID: 20098985
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Nishiyama H; Inukai J
    ACS Omega; 2023 May; 8(17):15318-15322. PubMed ID: 37151516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.