These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 27879893)
1. Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots. Lelong CC; Burger P; Jubelin G; Roux B; Labbé S; Baret F Sensors (Basel); 2008 May; 8(5):3557-3585. PubMed ID: 27879893 [TBL] [Abstract][Full Text] [Related]
2. Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery. Lu N; Wang W; Zhang Q; Li D; Yao X; Tian Y; Zhu Y; Cao W; Baret F; Liu S; Cheng T Front Plant Sci; 2019; 10():1601. PubMed ID: 31921250 [TBL] [Abstract][Full Text] [Related]
3. Analysis and Evaluation of the Image Preprocessing Process of a Six-Band Multispectral Camera Mounted on an Unmanned Aerial Vehicle for Winter Wheat Monitoring. Jiang J; Zheng H; Ji X; Cheng T; Tian Y; Zhu Y; Cao W; Ehsani R; Yao X Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30759869 [TBL] [Abstract][Full Text] [Related]
4. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data]. Gao L; Li CC; Wang BS; Yang Gui-jun ; Wang L; Fu K Ying Yong Sheng Tai Xue Bao; 2016 Jan; 27(1):191-200. PubMed ID: 27228609 [TBL] [Abstract][Full Text] [Related]
5. Estimation of Peanut Leaf Area Index from Unmanned Aerial Vehicle Multispectral Images. Qi H; Zhu B; Wu Z; Liang Y; Li J; Wang L; Chen T; Lan Y; Zhang L Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255612 [TBL] [Abstract][Full Text] [Related]
6. Applications of Unmanned Aerial Vehicle Based Imagery in Turfgrass Field Trials. Zhang J; Virk S; Porter W; Kenworthy K; Sullivan D; Schwartz B Front Plant Sci; 2019; 10():279. PubMed ID: 30930917 [TBL] [Abstract][Full Text] [Related]
7. Integrated Satellite, Unmanned Aerial Vehicle (UAV) and Ground Inversion of the SPAD of Winter Wheat in the Reviving Stage. Zhang S; Zhao G; Lang K; Su B; Chen X; Xi X; Zhang H Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934683 [TBL] [Abstract][Full Text] [Related]
8. Growth Monitoring and Yield Estimation of Maize Plant Using Unmanned Aerial Vehicle (UAV) in a Hilly Region. Sapkota S; Paudyal DR Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420599 [TBL] [Abstract][Full Text] [Related]
9. Can Commercial Digital Cameras Be Used as Multispectral Sensors? A Crop Monitoring Test. Lebourgeois V; Bégué A; Labbé S; Mallavan B; Prévot L; Roux B Sensors (Basel); 2008 Nov; 8(11):7300-7322. PubMed ID: 27873930 [TBL] [Abstract][Full Text] [Related]
10. Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines. Potgieter AB; George-Jaeggli B; Chapman SC; Laws K; Suárez Cadavid LA; Wixted J; Watson J; Eldridge M; Jordan DR; Hammer GL Front Plant Sci; 2017; 8():1532. PubMed ID: 28951735 [TBL] [Abstract][Full Text] [Related]
11. A model for phenotyping crop fractional vegetation cover using imagery from unmanned aerial vehicles. Wan L; Zhu J; Du X; Zhang J; Han X; Zhou W; Li X; Liu J; Liang F; He Y; Cen H J Exp Bot; 2021 Jun; 72(13):4691-4707. PubMed ID: 33963382 [TBL] [Abstract][Full Text] [Related]
12. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Haghighattalab A; González Pérez L; Mondal S; Singh D; Schinstock D; Rutkoski J; Ortiz-Monasterio I; Singh RP; Goodin D; Poland J Plant Methods; 2016; 12():35. PubMed ID: 27347001 [TBL] [Abstract][Full Text] [Related]
13. Application of Multilayer Perceptron with Automatic Relevance Determination on Weed Mapping Using UAV Multispectral Imagery. Tamouridou AA; Alexandridis TK; Pantazi XE; Lagopodi AL; Kashefi J; Kasampalis D; Kontouris G; Moshou D Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29019957 [TBL] [Abstract][Full Text] [Related]
14. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice. Zheng H; Cheng T; Li D; Yao X; Tian Y; Cao W; Zhu Y Front Plant Sci; 2018; 9():936. PubMed ID: 30034405 [TBL] [Abstract][Full Text] [Related]
15. Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images. Tunca E; Köksal ES; Çetin S; Ekiz NM; Balde H Environ Monit Assess; 2018 Oct; 190(11):682. PubMed ID: 30374821 [TBL] [Abstract][Full Text] [Related]
16. Remote Estimation of Rice Yield With Unmanned Aerial Vehicle (UAV) Data and Spectral Mixture Analysis. Duan B; Fang S; Zhu R; Wu X; Wang S; Gong Y; Peng Y Front Plant Sci; 2019; 10():204. PubMed ID: 30873194 [TBL] [Abstract][Full Text] [Related]
17. Development of a VNIR/SWIR Multispectral Imaging System for Vegetation Monitoring with Unmanned Aerial Vehicles. Jenal A; Bareth G; Bolten A; Kneer C; Weber I; Bongartz J Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847146 [TBL] [Abstract][Full Text] [Related]
18. High-Throughput Phenotyping of Bioethanol Potential in Cereals Using UAV-Based Multi-Spectral Imagery. Ostos-Garrido FJ; de Castro AI; Torres-Sánchez J; Pistón F; Peña JM Front Plant Sci; 2019; 10():948. PubMed ID: 31396251 [TBL] [Abstract][Full Text] [Related]
19. The potential of UAV and very high-resolution satellite imagery for yellow and stem rust detection and phenotyping in Ethiopia. Blasch G; Anberbir T; Negash T; Tilahun L; Belayineh FY; Alemayehu Y; Mamo G; Hodson DP; Rodrigues FA Sci Rep; 2023 Oct; 13(1):16768. PubMed ID: 37798287 [TBL] [Abstract][Full Text] [Related]
20. Assessment of Vegetation Indices Derived by UAV Imagery for Durum Wheat Phenotyping under a Water Limited and Heat Stressed Mediterranean Environment. Kyratzis AC; Skarlatos DP; Menexes GC; Vamvakousis VF; Katsiotis A Front Plant Sci; 2017; 8():1114. PubMed ID: 28694819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]