These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 27879922)

  • 41. Engineered microbial biosensors based on bacterial two-component systems as synthetic biotechnology platforms in bioremediation and biorefinery.
    Ravikumar S; Baylon MG; Park SJ; Choi JI
    Microb Cell Fact; 2017 Apr; 16(1):62. PubMed ID: 28410609
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Integrating and amplifying signal from riboswitch biosensors.
    Goodson MS; Harbaugh SV; Chushak YG; Kelley-Loughnane N
    Methods Enzymol; 2015; 550():73-91. PubMed ID: 25605381
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The prediction of PAHs bioavailability in soils using chemical methods: state of the art and future challenges.
    Cachada A; Pereira R; da Silva EF; Duarte AC
    Sci Total Environ; 2014 Feb; 472():463-80. PubMed ID: 24300458
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Anthocyanin biosynthetic pathway switched by metalloregulator PbrR to enable a biosensor for the detection of lead toxicity.
    Guo Y; Huang ZL; Zhu DL; Hu SY; Li H; Hui CY
    Front Microbiol; 2022; 13():975421. PubMed ID: 36267188
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biosensor technology for pesticides--a review.
    Verma N; Bhardwaj A
    Appl Biochem Biotechnol; 2015 Mar; 175(6):3093-119. PubMed ID: 25595494
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Standoff detection of explosives and buried landmines using fluorescent bacterial sensor cells.
    Kabessa Y; Eyal O; Bar-On O; Korouma V; Yagur-Kroll S; Belkin S; Agranat AJ
    Biosens Bioelectron; 2016 May; 79():784-8. PubMed ID: 26774094
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modelling the dynamics of pentachlorophenol bioavailability in column experiments.
    Dudal Y; Jacobson AR; Samson R; Deschênes L
    Water Res; 2004; 38(14-15):3147-54. PubMed ID: 15276730
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrochemical Measurement of the β-Galactosidase Reporter from Live Cells: A Comparison to the Miller Assay.
    Tschirhart T; Zhou XY; Ueda H; Tsao CY; Kim E; Payne GF; Bentley WE
    ACS Synth Biol; 2016 Jan; 5(1):28-35. PubMed ID: 26542230
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Update on the cometabolism of organic pollutants by bacteria.
    Nzila A
    Environ Pollut; 2013 Jul; 178():474-82. PubMed ID: 23570949
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reporter proteins in whole-cell optical bioreporter detection systems, biosensor integrations, and biosensing applications.
    Close DM; Ripp S; Sayler GS
    Sensors (Basel); 2009; 9(11):9147-74. PubMed ID: 22291559
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bioreporters: gfp versus lux revisited and single-cell response.
    Kohlmeier S; Mancuso M; Tecon R; Harms H; van der Meer JR; Wells M
    Biosens Bioelectron; 2007 Mar; 22(8):1578-85. PubMed ID: 16930979
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system.
    Webster DP; TerAvest MA; Doud DF; Chakravorty A; Holmes EC; Radens CM; Sureka S; Gralnick JA; Angenent LT
    Biosens Bioelectron; 2014 Dec; 62():320-4. PubMed ID: 25038536
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Information from single-cell bacterial biosensors: what is it good for?
    Tecon R; van der Meer JR
    Curr Opin Biotechnol; 2006 Feb; 17(1):4-10. PubMed ID: 16326092
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Physiological and toxicological characterization of an engineered whole-cell biosensor.
    Chinalia FA; Paton GI; Killham KS
    Bioresour Technol; 2008 Mar; 99(4):714-21. PubMed ID: 17379508
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives.
    Singh JS; Abhilash PC; Singh HB; Singh RP; Singh DP
    Gene; 2011 Jul; 480(1-2):1-9. PubMed ID: 21402131
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Where microbiology meets microengineering: design and applications of reporter bacteria.
    van der Meer JR; Belkin S
    Nat Rev Microbiol; 2010 Jul; 8(7):511-22. PubMed ID: 20514043
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetically modified whole-cell bioreporters for environmental assessment.
    Xu T; Close DM; Sayler GS; Ripp S
    Ecol Indic; 2013 May; 28():125-141. PubMed ID: 26594130
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineering a novel self-powering electrochemical biosensor.
    Gu X; Trybiło M; Ramsay S; Jensen M; Fulton R; Rosser S; Gilbert D
    Syst Synth Biol; 2010 Sep; 4(3):203-14. PubMed ID: 21189841
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design and biofabrication of bacterial living materials with robust and multiplexed biosensing capabilities.
    Usai F; Loi G; Scocozza F; Bellato M; Castagliuolo I; Conti M; Pasotti L
    Mater Today Bio; 2023 Feb; 18():100526. PubMed ID: 36632629
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Accelerating Genetic Sensor Development, Scale-up, and Deployment Using Synthetic Biology.
    Joshi SH; Jenkins C; Ulaeto D; Gorochowski TE
    Biodes Res; 2024; 6():0037. PubMed ID: 38919711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.