These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 27881)

  • 1. Defluorination of fluoroacetate in vitro by rat liver subcellular fractions.
    Kostyniak PJ; Bosmann HB; Smith FA
    Toxicol Appl Pharmacol; 1978 Apr; 44(1):89-97. PubMed ID: 27881
    [No Abstract]   [Full Text] [Related]  

  • 2. Enzymatic defluorination and metabolism of fluoroacetate, fluoroacetamide, fluoroethanol, and (-)-erythro-fluorocitrate in rats and mice examined by 19F and 13C NMR.
    Tecle B; Casida JE
    Chem Res Toxicol; 1989; 2(6):429-35. PubMed ID: 2519733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism and defluorination of fluoroacetate in the brush-tailed possum (Trichosurus vulpecula).
    Mead RJ; Oliver AJ; King DR
    Aust J Biol Sci; 1979 Feb; 32(1):15-26. PubMed ID: 485974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of fluoroacetate in the skink (Tiliqua rugosa) and the rat (Rattus norvegicus).
    Twigg LE; Mead RJ; King DR
    Aust J Biol Sci; 1986; 39(1):1-15. PubMed ID: 3778356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The enzymatic defluorination of fluoroacetate in mouse liver cytosol: the separation of defluorination activity from several glutathione S-transferases of mouse liver.
    Soiefer AI; Kostyniak PJ
    Arch Biochem Biophys; 1983 Sep; 225(2):928-35. PubMed ID: 6625615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and identification of rat hepatic cytosolic enzymes responsible for defluorination of methoxyflurane and fluoroacetate.
    Wang SL; Rice SA; Serra MT; Gross B
    Drug Metab Dispos; 1986; 14(4):392-8. PubMed ID: 2873984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of sulfhydryl compounds in the manifestation of fluoroacetate toxicity to the rat, brush-tailed possum, woylie and western grey kangaroo.
    Mead RJ; Moulden DL; Twigg LE
    Aust J Biol Sci; 1985; 38(2):139-49. PubMed ID: 4051904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro metabolism of [14C]rubratoxin B by rat hepatic subcellular fractions.
    Unger PD; Siraj MY; Hayes AW
    Food Cosmet Toxicol; 1979 Apr; 17(2):111-6. PubMed ID: 39021
    [No Abstract]   [Full Text] [Related]  

  • 9. Influence of thiols, ATP and CoA on protein breakdown by subcellular fractions from rat liver.
    Huisman W; Bouma JM; Gruber M
    Biochim Biophys Acta; 1973 Jan; 297(1):93-7. PubMed ID: 4693524
    [No Abstract]   [Full Text] [Related]  

  • 10. Influence of oestradiol on citrate accumulation in the uterus and blood of fluoroacetate-treated rats.
    Eckstein B; Shalem M
    J Endocrinol; 1966 Feb; 34(2):227-31. PubMed ID: 5901837
    [No Abstract]   [Full Text] [Related]  

  • 11. Tissue specificity of malate dehydrogenase isozymes. Kinetic discrimination by oxaloacetate and its mono- and difluoro analogues.
    Kun E; Volfin P
    Biochem Biophys Res Commun; 1966 Jan; 22(2):187-93. PubMed ID: 4285388
    [No Abstract]   [Full Text] [Related]  

  • 12. Stabilization and induction of a lipid peroxidation inhibitor present in the soluble fraction of rat liver homogenates.
    Kamataki T; Sugita O; Ozawa N; Kitagawa H
    Toxicol Appl Pharmacol; 1977 May; 40(2):283-90. PubMed ID: 877961
    [No Abstract]   [Full Text] [Related]  

  • 13. Defluorination of fluoroacetate in the rat.
    Smith FA; Gardner DE; Yuile CL
    Life Sci; 1977 Apr; 20(7):1131-8. PubMed ID: 850467
    [No Abstract]   [Full Text] [Related]  

  • 14. Conjugation and bioactivation of chlorotrifluoroethylene.
    Bonhaus DW; Gandolfi AJ
    Life Sci; 1981 Dec; 29(23):2399-405. PubMed ID: 7321765
    [No Abstract]   [Full Text] [Related]  

  • 15. Alterations in cellular intermediary metabolism by 4-dimethylaminophenol in the isolated perfused rat liver and the implications for 4-dimethylaminophenol toxicity.
    Elbers R; Soboll S; Kampffmeyer HG
    Biochem Pharmacol; 1980 Jun; 29(12):1747-53. PubMed ID: 7406900
    [No Abstract]   [Full Text] [Related]  

  • 16. Defluorination of fluoroacetate by lettuce.
    Ward PF; Huskisson NS
    Biochem J; 1972 May; 127(5):89P-90P. PubMed ID: 5076238
    [No Abstract]   [Full Text] [Related]  

  • 17. Glutathione conjugate formation from hexachlorocyclohexane and pentachlorocyclohexene by rat liver in vitro.
    Portig J; Kraus P; Stein K; Koransky W; Noack G; Gross B; Sodomann S
    Xenobiotica; 1979 Jun; 9(6):353-78. PubMed ID: 91272
    [No Abstract]   [Full Text] [Related]  

  • 18. Distribution of caffeine and metabolites in brain and liver subcellular fractions in the rat.
    Galli C; Spagnuolo C
    Pharmacol Res Commun; 1975 Apr; 7(2):125-32. PubMed ID: 1144489
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of ethanol and phenobarbital on the metabolism of propranolol by 9000 g rat liver supernatant.
    Pritchard JF; Schneck DW
    Biochem Pharmacol; 1977 Dec; 26(24):2453-4. PubMed ID: 597335
    [No Abstract]   [Full Text] [Related]  

  • 20. In vitro binding of metabolically activated [14C]-ledakrin, or 1-nitro-9-14C-(3'-dimethylamino-N-propylamino) acridine, a new antitumor and DNA cross-linking agent, to macromolecules of subcellular fractions isolated from rat liver and HeLa cells.
    Pawlak JW; Konopa J
    Biochem Pharmacol; 1979 Dec; 28(23):3391-402. PubMed ID: 43732
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.