BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27881)

  • 1. Defluorination of fluoroacetate in vitro by rat liver subcellular fractions.
    Kostyniak PJ; Bosmann HB; Smith FA
    Toxicol Appl Pharmacol; 1978 Apr; 44(1):89-97. PubMed ID: 27881
    [No Abstract]   [Full Text] [Related]  

  • 2. Enzymatic defluorination and metabolism of fluoroacetate, fluoroacetamide, fluoroethanol, and (-)-erythro-fluorocitrate in rats and mice examined by 19F and 13C NMR.
    Tecle B; Casida JE
    Chem Res Toxicol; 1989; 2(6):429-35. PubMed ID: 2519733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism and defluorination of fluoroacetate in the brush-tailed possum (Trichosurus vulpecula).
    Mead RJ; Oliver AJ; King DR
    Aust J Biol Sci; 1979 Feb; 32(1):15-26. PubMed ID: 485974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of fluoroacetate in the skink (Tiliqua rugosa) and the rat (Rattus norvegicus).
    Twigg LE; Mead RJ; King DR
    Aust J Biol Sci; 1986; 39(1):1-15. PubMed ID: 3778356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The enzymatic defluorination of fluoroacetate in mouse liver cytosol: the separation of defluorination activity from several glutathione S-transferases of mouse liver.
    Soiefer AI; Kostyniak PJ
    Arch Biochem Biophys; 1983 Sep; 225(2):928-35. PubMed ID: 6625615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and identification of rat hepatic cytosolic enzymes responsible for defluorination of methoxyflurane and fluoroacetate.
    Wang SL; Rice SA; Serra MT; Gross B
    Drug Metab Dispos; 1986; 14(4):392-8. PubMed ID: 2873984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of sulfhydryl compounds in the manifestation of fluoroacetate toxicity to the rat, brush-tailed possum, woylie and western grey kangaroo.
    Mead RJ; Moulden DL; Twigg LE
    Aust J Biol Sci; 1985; 38(2):139-49. PubMed ID: 4051904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro metabolism of [14C]rubratoxin B by rat hepatic subcellular fractions.
    Unger PD; Siraj MY; Hayes AW
    Food Cosmet Toxicol; 1979 Apr; 17(2):111-6. PubMed ID: 39021
    [No Abstract]   [Full Text] [Related]  

  • 9. Influence of thiols, ATP and CoA on protein breakdown by subcellular fractions from rat liver.
    Huisman W; Bouma JM; Gruber M
    Biochim Biophys Acta; 1973 Jan; 297(1):93-7. PubMed ID: 4693524
    [No Abstract]   [Full Text] [Related]  

  • 10. Influence of oestradiol on citrate accumulation in the uterus and blood of fluoroacetate-treated rats.
    Eckstein B; Shalem M
    J Endocrinol; 1966 Feb; 34(2):227-31. PubMed ID: 5901837
    [No Abstract]   [Full Text] [Related]  

  • 11. Tissue specificity of malate dehydrogenase isozymes. Kinetic discrimination by oxaloacetate and its mono- and difluoro analogues.
    Kun E; Volfin P
    Biochem Biophys Res Commun; 1966 Jan; 22(2):187-93. PubMed ID: 4285388
    [No Abstract]   [Full Text] [Related]  

  • 12. Stabilization and induction of a lipid peroxidation inhibitor present in the soluble fraction of rat liver homogenates.
    Kamataki T; Sugita O; Ozawa N; Kitagawa H
    Toxicol Appl Pharmacol; 1977 May; 40(2):283-90. PubMed ID: 877961
    [No Abstract]   [Full Text] [Related]  

  • 13. Defluorination of fluoroacetate in the rat.
    Smith FA; Gardner DE; Yuile CL
    Life Sci; 1977 Apr; 20(7):1131-8. PubMed ID: 850467
    [No Abstract]   [Full Text] [Related]  

  • 14. Conjugation and bioactivation of chlorotrifluoroethylene.
    Bonhaus DW; Gandolfi AJ
    Life Sci; 1981 Dec; 29(23):2399-405. PubMed ID: 7321765
    [No Abstract]   [Full Text] [Related]  

  • 15. Alterations in cellular intermediary metabolism by 4-dimethylaminophenol in the isolated perfused rat liver and the implications for 4-dimethylaminophenol toxicity.
    Elbers R; Soboll S; Kampffmeyer HG
    Biochem Pharmacol; 1980 Jun; 29(12):1747-53. PubMed ID: 7406900
    [No Abstract]   [Full Text] [Related]  

  • 16. Defluorination of fluoroacetate by lettuce.
    Ward PF; Huskisson NS
    Biochem J; 1972 May; 127(5):89P-90P. PubMed ID: 5076238
    [No Abstract]   [Full Text] [Related]  

  • 17. Glutathione conjugate formation from hexachlorocyclohexane and pentachlorocyclohexene by rat liver in vitro.
    Portig J; Kraus P; Stein K; Koransky W; Noack G; Gross B; Sodomann S
    Xenobiotica; 1979 Jun; 9(6):353-78. PubMed ID: 91272
    [No Abstract]   [Full Text] [Related]  

  • 18. Distribution of caffeine and metabolites in brain and liver subcellular fractions in the rat.
    Galli C; Spagnuolo C
    Pharmacol Res Commun; 1975 Apr; 7(2):125-32. PubMed ID: 1144489
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of ethanol and phenobarbital on the metabolism of propranolol by 9000 g rat liver supernatant.
    Pritchard JF; Schneck DW
    Biochem Pharmacol; 1977 Dec; 26(24):2453-4. PubMed ID: 597335
    [No Abstract]   [Full Text] [Related]  

  • 20. In vitro binding of metabolically activated [14C]-ledakrin, or 1-nitro-9-14C-(3'-dimethylamino-N-propylamino) acridine, a new antitumor and DNA cross-linking agent, to macromolecules of subcellular fractions isolated from rat liver and HeLa cells.
    Pawlak JW; Konopa J
    Biochem Pharmacol; 1979 Dec; 28(23):3391-402. PubMed ID: 43732
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.