BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27881066)

  • 1. New Insights Emerging from Recent Investigations on Human Group II Pyridoxal 5'-Phosphate Decarboxylases.
    Paiardini A; Giardina G; Rossignoli G; Voltattorni CB; Bertoldi M
    Curr Med Chem; 2017; 24(3):226-244. PubMed ID: 27881066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple evolutionary origin of pyridoxal-5'-phosphate-dependent amino acid decarboxylases.
    Sandmeier E; Hale TI; Christen P
    Eur J Biochem; 1994 May; 221(3):997-1002. PubMed ID: 8181483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and substrate specificity determinants of the taurine biosynthetic enzyme cysteine sulphinic acid decarboxylase.
    Mahootchi E; Raasakka A; Luan W; Muruganandam G; Loris R; Haavik J; Kursula P
    J Struct Biol; 2021 Mar; 213(1):107674. PubMed ID: 33253877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of antibody reactivity against cysteine sulfinic acid decarboxylase, a pyridoxal phosphate-dependent enzyme, in endocrine autoimmune disease.
    Sköldberg F; Rorsman F; Perheentupa J; Landin-Olsson M; Husebye ES; Gustafsson J; Kämpe O
    J Clin Endocrinol Metab; 2004 Apr; 89(4):1636-40. PubMed ID: 15070923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural motifs for pyridoxal-5'-phosphate binding in decarboxylases: an analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase.
    Momany C; Ghosh R; Hackert ML
    Protein Sci; 1995 May; 4(5):849-54. PubMed ID: 7663340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen reactivity with pyridoxal 5'-phosphate enzymes: biochemical implications and functional relevance.
    Bisello G; Longo C; Rossignoli G; Phillips RS; Bertoldi M
    Amino Acids; 2020 Aug; 52(8):1089-1105. PubMed ID: 32844248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the mouse acidic amino acid decarboxylase GADL1.
    Raasakka A; Mahootchi E; Winge I; Luan W; Kursula P; Haavik J
    Acta Crystallogr F Struct Biol Commun; 2018 Jan; 74(Pt 1):65-73. PubMed ID: 29372909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diverse functional evolution of serine decarboxylases: identification of two novel acetaldehyde synthases that uses hydrophobic amino acids as substrates.
    Torrens-Spence MP; von Guggenberg R; Lazear M; Ding H; Li J
    BMC Plant Biol; 2014 Sep; 14():247. PubMed ID: 25230835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of cysteine-dependent inactivation of aspartate/glutamate/cysteine sulfinic acid α-decarboxylases.
    Liu P; Torrens-Spence MP; Ding H; Christensen BM; Li J
    Amino Acids; 2013 Feb; 44(2):391-404. PubMed ID: 22718265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyridoxal 5'-phosphate deficiency causes a loss of aromatic L-amino acid decarboxylase in patients and human neuroblastoma cells, implications for aromatic L-amino acid decarboxylase and vitamin B(6) deficiency states.
    Allen GF; Neergheen V; Oppenheim M; Fitzgerald JC; Footitt E; Hyland K; Clayton PT; Land JM; Heales SJ
    J Neurochem; 2010 Jul; 114(1):87-96. PubMed ID: 20403077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for substrate specificity of meso-diaminopimelic acid decarboxylase from Corynebacterium glutamicum.
    Son HF; Kim KJ
    Biochem Biophys Res Commun; 2018 Jan; 495(2):1815-1821. PubMed ID: 29233695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a pyridoxal-5'-phosphate-dependent l-lysine decarboxylase/oxidase from Burkholderia sp. AIU 395.
    Sugawara A; Matsui D; Takahashi N; Yamada M; Asano Y; Isobe K
    J Biosci Bioeng; 2014 Nov; 118(5):496-501. PubMed ID: 24863180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structural and mechanistic comparison of pyridoxal 5'-phosphate dependent decarboxylase and transaminase enzymes.
    Gani D
    Philos Trans R Soc Lond B Biol Sci; 1991 May; 332(1263):131-9. PubMed ID: 1678532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary Profiling of Group II Pyridoxal-Phosphate-Dependent Decarboxylases Suggests Expansion and Functional Diversification of Histidine Decarboxylases in Tomato.
    Kumar R; Jiwani G; Pareek A; SravanKumar T; Khurana A; Sharma AK
    Plant Genome; 2016 Mar; 9(1):. PubMed ID: 27898758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prokaryotic and eukaryotic pyridoxal-dependent decarboxylases are homologous.
    Jackson FR
    J Mol Evol; 1990 Oct; 31(4):325-9. PubMed ID: 2124279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and properties of pyridoxal-5'-phosphate-dependent histidine decarboxylases from Klebsiella planticola and Enterobacter aerogenes.
    Guirard BM; Snell EE
    J Bacteriol; 1987 Sep; 169(9):3963-8. PubMed ID: 3114230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of pyridoxal 5'-phosphate dependent decarboxylase and transaminase enzymes at a molecular level.
    Smith DM; Thomas NR; Gani D
    Experientia; 1991 Dec; 47(11-12):1104-18. PubMed ID: 1765122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into the mechanism of internal aldimine formation and catalytic loop dynamics in an archaeal Group II decarboxylase.
    Chellam Gayathri S; Manoj N
    J Struct Biol; 2019 Nov; 208(2):137-151. PubMed ID: 31445086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and properties of a pyridoxal 5'-phosphate-dependent histidine decarboxylase from Morganella morganii AM-15.
    Tanase S; Guirard BM; Snell EE
    J Biol Chem; 1985 Jun; 260(11):6738-46. PubMed ID: 3997848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical and biophysical studies of Helicobacter pylori arginine decarboxylase, an enzyme important for acid adaptation in host.
    Alam M; Srivastava A; Dutta A; Sau AK
    IUBMB Life; 2018 Jul; 70(7):658-669. PubMed ID: 29684243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.