These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 27881759)
1. Effects of sea ice cover on satellite-detected primary production in the Arctic Ocean. Kahru M; Lee Z; Mitchell BG; Nevison CD Biol Lett; 2016 Nov; 12(11):. PubMed ID: 27881759 [TBL] [Abstract][Full Text] [Related]
2. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Lewis KM; van Dijken GL; Arrigo KR Science; 2020 Jul; 369(6500):198-202. PubMed ID: 32647002 [TBL] [Abstract][Full Text] [Related]
3. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Assmy P; Fernández-Méndez M; Duarte P; Meyer A; Randelhoff A; Mundy CJ; Olsen LM; Kauko HM; Bailey A; Chierici M; Cohen L; Doulgeris AP; Ehn JK; Fransson A; Gerland S; Hop H; Hudson SR; Hughes N; Itkin P; Johnsen G; King JA; Koch BP; Koenig Z; Kwasniewski S; Laney SR; Nicolaus M; Pavlov AK; Polashenski CM; Provost C; Rösel A; Sandbu M; Spreen G; Smedsrud LH; Sundfjord A; Taskjelle T; Tatarek A; Wiktor J; Wagner PM; Wold A; Steen H; Granskog MA Sci Rep; 2017 Jan; 7():40850. PubMed ID: 28102329 [TBL] [Abstract][Full Text] [Related]
4. Nitrate supply and uptake in the Atlantic Arctic sea ice zone: seasonal cycle, mechanisms and drivers. Henley SF; Porter M; Hobbs L; Braun J; Guillaume-Castel R; Venables EJ; Dumont E; Cottier F Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190361. PubMed ID: 32862810 [TBL] [Abstract][Full Text] [Related]
5. Variability in spring phytoplankton blooms associated with ice retreat timing in the Pacific Arctic from 2003-2019. Waga H; Eicken H; Hirawake T; Fukamachi Y PLoS One; 2021; 16(12):e0261418. PubMed ID: 34914776 [TBL] [Abstract][Full Text] [Related]
6. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin. Cai WJ; Chen L; Chen B; Gao Z; Lee SH; Chen J; Pierrot D; Sullivan K; Wang Y; Hu X; Huang WJ; Zhang Y; Xu S; Murata A; Grebmeier JM; Jones EP; Zhang H Science; 2010 Jul; 329(5991):556-9. PubMed ID: 20651119 [TBL] [Abstract][Full Text] [Related]
8. Remote-sensing monitoring of colored dissolved organic matter in the Arctic Ocean. Huang J; Chen J; Mu Y; Cao C; Shen H Mar Pollut Bull; 2024 Jul; 204():116529. PubMed ID: 38824705 [TBL] [Abstract][Full Text] [Related]
9. Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Ji R; Jin M; Varpe Ø Glob Chang Biol; 2013 Mar; 19(3):734-41. PubMed ID: 23504831 [TBL] [Abstract][Full Text] [Related]
10. Possible enhancement in ocean productivity associated with wildfire-derived nutrient and black carbon deposition in the Arctic Ocean in 2019-2021. Seok MW; Ko YH; Park KT; Kim TW Mar Pollut Bull; 2024 Apr; 201():116149. PubMed ID: 38364527 [TBL] [Abstract][Full Text] [Related]
11. Linking deep convection and phytoplankton blooms in the northern Labrador Sea in a changing climate. Balaguru K; Doney SC; Bianucci L; Rasch PJ; Leung LR; Yoon JH; Lima ID PLoS One; 2018; 13(1):e0191509. PubMed ID: 29370224 [TBL] [Abstract][Full Text] [Related]
12. A comprehensive satellite-based assessment across the Pacific Arctic Distributed Biological Observatory shows widespread late-season sea surface warming and sea ice declines with significant influences on primary productivity. Frey KE; Comiso JC; Stock LV; Young LNC; Cooper LW; Grebmeier JM PLoS One; 2023; 18(7):e0287960. PubMed ID: 37432919 [TBL] [Abstract][Full Text] [Related]
13. An assessment of phytoplankton primary productivity in the Arctic Ocean from satellite ocean color/in situ chlorophyll- Lee YJ; Matrai PA; Friedrichs MA; Saba VS; Antoine D; Ardyna M; Asanuma I; Babin M; Bélanger S; Benoît-Gagné M; Devred E; Fernández-Méndez M; Gentili B; Hirawake T; Kang SH; Kameda T; Katlein C; Lee SH; Lee Z; Mélin F; Scardi M; Smyth TJ; Tang S; Turpie KR; Waters KJ; Westberry TK J Geophys Res Oceans; 2015 Sep; 120(9):6508-6541. PubMed ID: 27668139 [TBL] [Abstract][Full Text] [Related]
14. Bottom-associated phytoplankton bloom and its expansion in the Arctic Ocean. Shiozaki T; Fujiwara A; Sugie K; Nishino S; Makabe A; Harada N Glob Chang Biol; 2022 Dec; 28(24):7286-7295. PubMed ID: 36164979 [TBL] [Abstract][Full Text] [Related]
15. Loss of sea ice in the Arctic. Perovich DK; Richter-Menge JA Ann Rev Mar Sci; 2009; 1():417-41. PubMed ID: 21141043 [TBL] [Abstract][Full Text] [Related]
16. Seasonal modulation of phytoplankton biomass in the Southern Ocean. Arteaga LA; Boss E; Behrenfeld MJ; Westberry TK; Sarmiento JL Nat Commun; 2020 Oct; 11(1):5364. PubMed ID: 33097697 [TBL] [Abstract][Full Text] [Related]
17. The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean. Horvat C; Jones DR; Iams S; Schroeder D; Flocco D; Feltham D Sci Adv; 2017 Mar; 3(3):e1601191. PubMed ID: 28435859 [TBL] [Abstract][Full Text] [Related]
18. Decadal increase in Arctic dimethylsulfide emission. Galí M; Devred E; Babin M; Levasseur M Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19311-19317. PubMed ID: 31501321 [TBL] [Abstract][Full Text] [Related]
19. Polar zoobenthos blue carbon storage increases with sea ice losses, because across-shelf growth gains from longer algal blooms outweigh ice scour mortality in the shallows. Barnes DKA Glob Chang Biol; 2017 Dec; 23(12):5083-5091. PubMed ID: 28643454 [TBL] [Abstract][Full Text] [Related]
20. Bio-optical evidence for increasing Orkney A; Platt T; Narayanaswamy BE; Kostakis I; Bouman HA Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190357. PubMed ID: 32862820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]