BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27881795)

  • 21. SINGLE ANODE TRIPLE GEM TISSUE EQUIVALENT PROPORTIONAL COUNTER AS THE BASIS FOR A PERSONAL NEUTRON DOSIMETER.
    Seydaliev M; Dubeau J; Ali F
    Radiat Prot Dosimetry; 2017 Apr; 174(3):337-347. PubMed ID: 27574327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A NOVEL TEPC FOR MICRODOSIMETRY AT NANOMETRIC LEVEL: RESPONSE AGAINST DIFFERENT NEUTRON FIELDS.
    Bortot D; Mazzucconi D; Bonfanti M; Agosteo S; Pola A; Pasquato S; Fazzi A; Colautti P; Conte V
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):172-176. PubMed ID: 29036508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of a multi-element TEPC for neutron monitoring.
    Waker AJ; Aslam ; Lori J
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):463-6. PubMed ID: 21186210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulations of the mean chord length of a multi-element TEPC irradiated by monoenergetic neutrons.
    Ménard S; Louis C; Lahaye T; Chau Q
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):185-9. PubMed ID: 16604624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An active personal neutron dosemeter based on microdosimetric principles: CIME.
    Ménard S; Cutarella D; Lahaye T; Bolognese-Milsztajn T
    Radiat Prot Dosimetry; 2001; 96(1-3):265-8. PubMed ID: 11586745
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monte Carlo tools to supplement experimental microdosimetric spectra.
    Chiriotti S; Moro D; Conte V; Colautti P; D'Agostino E; Sterpin E; Vynckier S
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):454-8. PubMed ID: 24132390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TEPC performance for a reference standard.
    Zhang W; Wang Z; Liu Y; Li C; Xiao X; Luo H; Chen J; Li W
    Radiat Prot Dosimetry; 2014 Jan; 158(2):246-50. PubMed ID: 24036657
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement and simulation of lineal energy distribution at the CERN high energy facility with a tissue equivalent proportional counter.
    Rollet S; Autischer M; Beck P; Latocha M
    Radiat Prot Dosimetry; 2007; 125(1-4):425-8. PubMed ID: 17277327
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of miniature tissue-equivalent proportional counters for neutron radiotherapy applications.
    Burmeister J; Kota C; Maughan RL; Waker AJ
    Phys Med Biol; 2002 May; 47(10):1633-45. PubMed ID: 12069083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating the TEPC radiation quality factor response for low energy accelerator based clinical applications.
    Aslam ; Prestwich WV; McNeill FE; Waker AJ
    Radiat Prot Dosimetry; 2003; 103(4):311-22. PubMed ID: 12797554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microdosimetric approach to NIRS-defined biological dose measurement for carbon-ion treatment beam.
    Kase Y; Kanai T; Sakama M; Tameshige Y; Himukai T; Nose H; Matsufuji N
    J Radiat Res; 2011; 52(1):59-68. PubMed ID: 21160136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mobile TEPC-based system to measure the contributions to H*(10) at flight altitudes.
    Wissmann F; Langner F; Roth J; Schrewe U
    Radiat Prot Dosimetry; 2004; 110(1-4):347-9. PubMed ID: 15353672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TISSUE-EQUIVALENCE OF H2 GAS FOR MICRODOSIMETRY IN NEUTRON FIELDS: A GEANT4 MONTE CARLO STUDY.
    Chattaraj A; Selvam TP
    Radiat Prot Dosimetry; 2021 Dec; 197(3-4):202-211. PubMed ID: 34977947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dosimetric considerations on TEPC fluka-simulation and measurements.
    Rollet S; Beck P; Ferrari A; Pelliccioni M; Autischer M
    Radiat Prot Dosimetry; 2004; 110(1-4):833-7. PubMed ID: 15353755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dosimetry of low-energy neutrons using low-pressure proportional counters.
    Schuhmacher H; Alberts WG; Menzel HG; Bühler G
    Radiat Res; 1987 Jul; 111(1):1-13. PubMed ID: 3602347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DOSIMETRIC response of a REM-500 in low energy neutron fields typical of nuclear power plants.
    Aslam ; Matysiak W; Atanackovic J; Waker AJ
    Health Phys; 2012 Jun; 102(6):603-13. PubMed ID: 22570919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanodosimetric measurements with an avalanche confinement TEPC.
    Cesari V; Colautti P; Magrin G; De Nardo L; Baek WY; Grosswendt B; Alkaa A; Khamphan C; Ségur P; Tornielli G
    Radiat Prot Dosimetry; 2002; 99(1-4):337-42. PubMed ID: 12194318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. COMPARISON STUDY OF VARIOUS PLASTICS AS THE WALL MATERIAL OF THGEM-BASED MICRODOSEMETERS FOR FAST NEUTRON MEASUREMENTS.
    Moslehi A; Raisali G; Lamehi M
    Radiat Prot Dosimetry; 2017 Apr; 173(4):286-292. PubMed ID: 26891790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the microdosimetric event-size method and the twin-chamber method of separating dose into neutron and gamma components.
    Stinchcomb TG; Kuchnir FT; Skaggs LS
    Phys Med Biol; 1980 Jan; 25(1):51-64. PubMed ID: 7360792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Derivation of radiation quality average parameters in neutron-gamma radiation fields with the high-pressure ionization chamber: theory and practice.
    Makrigiorgos GM
    Radiat Res; 1989 Jun; 118(3):387-400. PubMed ID: 2727266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.