These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64. Microbial synthesis of magnetite and Mn-substituted magnetite nanoparticles: influence of bacteria and incubation temperature. Roh Y; Jang HD; Suh Y J Nanosci Nanotechnol; 2007 Nov; 7(11):3938-43. PubMed ID: 18047092 [TBL] [Abstract][Full Text] [Related]
65. Wettability of Magnetite Nanoparticles Guides Growth from Stabilized Amorphous Ferrihydrite. Kuhrts L; Prévost S; Chevrier DM; Pekker P; Spaeker O; Egglseder M; Baumgartner J; Pósfai M; Faivre D J Am Chem Soc; 2021 Jul; 143(29):10963-10969. PubMed ID: 34264055 [TBL] [Abstract][Full Text] [Related]
66. Gigantism in unique biogenic magnetite at the Paleocene-Eocene Thermal Maximum. Schumann D; Raub TD; Kopp RE; Guerquin-Kern JL; Wu TD; Rouiller I; Smirnov AV; Sears SK; Lücken U; Tikoo SM; Hesse R; Kirschvink JL; Vali H Proc Natl Acad Sci U S A; 2008 Nov; 105(46):17648-53. PubMed ID: 18936486 [TBL] [Abstract][Full Text] [Related]
67. Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens. Byrne JM; Telling ND; Coker VS; Pattrick RA; van der Laan G; Arenholz E; Tuna F; Lloyd JR Nanotechnology; 2011 Nov; 22(45):455709. PubMed ID: 22020365 [TBL] [Abstract][Full Text] [Related]
71. Influence of chloride and Fe(II) content on the reduction of Hg(II) by magnetite. Pasakarnis TS; Boyanov MI; Kemner KM; Mishra B; O'Loughlin EJ; Parkin G; Scherer MM Environ Sci Technol; 2013 Jul; 47(13):6987-94. PubMed ID: 23621619 [TBL] [Abstract][Full Text] [Related]
72. Investigating the ferric ion binding site of magnetite biomineralisation protein Mms6. Rawlings AE; Liravi P; Corbett S; Holehouse AS; Staniland SS PLoS One; 2020; 15(2):e0228708. PubMed ID: 32097412 [TBL] [Abstract][Full Text] [Related]
73. Biogenesis of Magnetite Nanoparticles Using Jeong M; Kim Y; Roh Y J Nanosci Nanotechnol; 2019 Feb; 19(2):963-966. PubMed ID: 30360180 [TBL] [Abstract][Full Text] [Related]
74. Co-ordinated functions of Mms proteins define the surface structure of cubo-octahedral magnetite crystals in magnetotactic bacteria. Arakaki A; Yamagishi A; Fukuyo A; Tanaka M; Matsunaga T Mol Microbiol; 2014 Aug; 93(3):554-67. PubMed ID: 24961165 [TBL] [Abstract][Full Text] [Related]
75. Proteomic analysis of irregular, bullet-shaped magnetosomes in the sulphate-reducing magnetotactic bacterium Desulfovibrio magneticus RS-1. Matsunaga T; Nemoto M; Arakari A; Tanaka M Proteomics; 2009 Jun; 9(12):3341-52. PubMed ID: 19579222 [TBL] [Abstract][Full Text] [Related]
76. Electrochemical Production of Magnetite Nanoparticles for Sulfide Control in Sewers. Lin HW; Couvreur K; Donose BC; Rabaey K; Yuan Z; Pikaar I Environ Sci Technol; 2017 Nov; 51(21):12229-12234. PubMed ID: 29020773 [TBL] [Abstract][Full Text] [Related]
77. Identification of iron transporters expressed in the magnetotactic bacterium Magnetospirillum magnetotacticum. Taoka A; Umeyama C; Fukumori Y Curr Microbiol; 2009 Feb; 58(2):177-81. PubMed ID: 18972162 [TBL] [Abstract][Full Text] [Related]
78. Extracellular biosynthesis of magnetite using fungi. Bharde A; Rautaray D; Bansal V; Ahmad A; Sarkar I; Yusuf SM; Sanyal M; Sastry M Small; 2006 Jan; 2(1):135-41. PubMed ID: 17193569 [TBL] [Abstract][Full Text] [Related]
79. Formation of magnetite by bacteria and its application. Arakaki A; Nakazawa H; Nemoto M; Mori T; Matsunaga T J R Soc Interface; 2008 Sep; 5(26):977-99. PubMed ID: 18559314 [TBL] [Abstract][Full Text] [Related]
80. On the change in bacterial size and magnetosome features for Magnetospirillum magnetotacticum (MS-1) under high concentrations of zinc and nickel. Kundu S; Kale AA; Banpurkar AG; Kulkarni GR; Ogale SB Biomaterials; 2009 Sep; 30(25):4211-8. PubMed ID: 19500838 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]