These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27882530)

  • 1. Effect of Dispersion Method on Stability and Dielectric Strength of Transformer Oil-Based TiO
    Lv YZ; Li C; Sun Q; Huang M; Li CR; Qi B
    Nanoscale Res Lett; 2016 Dec; 11(1):515. PubMed ID: 27882530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectric Strength of Nanofluid-Impregnated Transformer Solid Insulation.
    Pérez-Rosa D; Montero A; García B; Burgos JC
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematical study of multi-walled carbon nanotube nanofluids based disposed transformer oil.
    Suhaimi NS; Md Din MF; Ishak MT; Abdul Rahman AR; Mohd Ariffin M; Hashim N'; Wang J
    Sci Rep; 2020 Dec; 10(1):20984. PubMed ID: 33268816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of TiO
    Fernández I; Valiente R; Ortiz F; Renedo CJ; Ortiz A
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32268581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the Use of Silane-Grafted Fumed Silica Nanoparticles to Produce Stable Transformer Oil-Based Nanofluids.
    Qureshi MI; Qureshi B
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breakdown Performance and Partial Discharge Development in Transformer Oil-Based Metal Carbide Nanofluids.
    Koutras KN; Tegopoulos SN; Charalampakos VP; Kyritsis A; Gonos IF; Pyrgioti EC
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Microwave Irradiation on the Dielectric Characteristics of Semi-Conductive Nanoparticle-Based Nanofluids: Progress towards the Microwave Synthesis.
    Raja S; Koperundevi G; Eswaran M
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of ultrasonication period for better dispersion and stability of TiO
    Mahbubul IM; Elcioglu EB; Saidur R; Amalina MA
    Ultrason Sonochem; 2017 Jul; 37():360-367. PubMed ID: 28427644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical Study on Alternating Current Breakdown Mechanism Between Sphere-Sphere Electrodes in Transformer Oil-Based Magnetic Nanofluids.
    Lee WH; Lee JC
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6629-6634. PubMed ID: 29677848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Plasma Treated Alumina Nanoparticles on Breakdown Strength, Partial Discharge Resistance, and Thermophysical Properties of Mineral Oil-Based Nanofluids.
    Saman NM; Zakaria IH; Ahmad MH; Abdul-Malek Z
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34203364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Fe
    Du B; Liu Q; Shi Y; Zhao Y
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32781514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Nanoparticle Morphology on Pre-Breakdown and Breakdown Properties of Insulating Oil-Based Nanofluids.
    Lv Y; Ge Y; Sun Z; Sun Q; Huang M; Li C; Qi B; Yuan J; Xing Z
    Nanomaterials (Basel); 2018 Jun; 8(7):. PubMed ID: 29958426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Ag nanoparticle addition and ultrasonic treatment on a stable TiO2 nanofluid.
    Chakraborty S; Mukherjee J; Manna M; Ghosh P; Das S; Denys MB
    Ultrason Sonochem; 2012 Sep; 19(5):1044-50. PubMed ID: 22421063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective ultrasonication process for better colloidal dispersion of nanofluid.
    Mahbubul IM; Saidur R; Amalina MA; Elcioglu EB; Okutucu-Ozyurt T
    Ultrason Sonochem; 2015 Sep; 26():361-369. PubMed ID: 25616639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental stability analysis of different water-based nanofluids.
    Fedele L; Colla L; Bobbo S; Barison S; Agresti F
    Nanoscale Res Lett; 2011 Apr; 6(1):300. PubMed ID: 21711817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significantly Enhanced Electrical Performances of Eco-Friendly Dielectric Liquids for Harsh Conditions with Fullerene.
    Huang Z; Wang F; Wang Q; Yao W; Sun K; Zhang R; Zhao J; Lou Z; Li J
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31323970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant-Augmented Functional Silica Nanoparticle Based Nanofluid for Enhanced Oil Recovery at High Temperature and Salinity.
    Zhou Y; Wu X; Zhong X; Sun W; Pu H; Zhao JX
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45763-45775. PubMed ID: 31729855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrohydrodynamics Analysis of Dielectric 2D Nanofluids.
    Maharana M; Baruah N; Nayak SK; Sahoo N; Wu K; Goswami L
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Up-gradation of the dielectric, physical & chemical properties of cottonseed-based, non-edible green nanofluids as sustainable alternatives for high-voltage equipment's insulation fluids.
    Siddique A; Adnan M; Aslam W; Murtaza Qamar HG; Aslam MN; Alqahtani SA
    Heliyon; 2024 Apr; 10(7):e28352. PubMed ID: 38571657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the Stability of Dielectric Nanofluids for Use in Transformers under Real Operating Conditions.
    Primo VA; Pérez-Rosa D; García B; Cabanelas JC
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30678033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.