These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 27882530)
21. Evaluation of the Stability of Dielectric Nanofluids for Use in Transformers under Real Operating Conditions. Primo VA; Pérez-Rosa D; García B; Cabanelas JC Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30678033 [TBL] [Abstract][Full Text] [Related]
22. The Impact of TiO Wang Z; Zhou Y; Lu W; Peng N; Chen W Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30999649 [TBL] [Abstract][Full Text] [Related]
23. Experimental Investigation of the Viscosity and Stability of Scleroglucan-Based Nanofluids for Enhanced Oil Recovery. Castro RH; Corredor LM; Llanos S; Causil MA; Arias A; Pérez E; Quintero HI; Romero Bohórquez AR; Franco CA; Cortés FB Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38251121 [TBL] [Abstract][Full Text] [Related]
24. Mineral and Ester Nanofluids as Dielectric Cooling Liquid for Power Transformers. Olmo C; Méndez C; Quintanilla PJ; Ortiz F; Renedo CJ; Ortiz A Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957155 [TBL] [Abstract][Full Text] [Related]
25. Dielectric Fluids for Power Transformers with Special Emphasis on Biodegradable Nanofluids. Šárpataky M; Kurimský J; Rajňák M Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835648 [TBL] [Abstract][Full Text] [Related]
26. Rice Husk Ash-Derived Silica Nanofluids: Synthesis and Stability Study. Zhang Z; He W; Zheng J; Wang G; Ji J Nanoscale Res Lett; 2016 Dec; 11(1):502. PubMed ID: 27848236 [TBL] [Abstract][Full Text] [Related]
27. A Study on Preparation and Stabilizing Mechanism of Hydrophobic Silica Nanofluids. Zhao M; Lv W; Li Y; Dai C; Zhou H; Song X; Wu Y Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30096836 [TBL] [Abstract][Full Text] [Related]
28. Comparison of the Corrosion Behavior of Brass in TiO Xie S; Zhang Y; Song Y; Ge F; Huang X; Ge H; Zhao Y Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32486005 [TBL] [Abstract][Full Text] [Related]
29. Influence of Emerging Semiconductive Nanoparticles on AC Dielectric Strength of Synthetic Ester Midel-7131 Insulating Oil. Fasehullah M; Wang F; Jamil S; Bhutta MS Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806813 [TBL] [Abstract][Full Text] [Related]
30. Wetting and spreading of nanofluids on solid surfaces driven by the structural disjoining pressure: statics analysis and experiments. Kondiparty K; Nikolov A; Wu S; Wasan D Langmuir; 2011 Apr; 27(7):3324-35. PubMed ID: 21395240 [TBL] [Abstract][Full Text] [Related]
31. Development of Graphene Oxide-Based Nonedible Cottonseed Nanofluids for Power Transformers. Farade RA; Abdul Wahab NI; Mansour DA; Azis NB; Bt Jasni J; Soudagar MEM; Siddappa V Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32512926 [TBL] [Abstract][Full Text] [Related]
32. Research Progress in Nanofluid-Enhanced Oil Recovery Technology and Mechanism. Tong Q; Fan Z; Liu Q; Qiao S; Cai L; Fu Y; Zhang X; Sun A Molecules; 2023 Nov; 28(22):. PubMed ID: 38005200 [TBL] [Abstract][Full Text] [Related]
33. Design and Tuning of Nanofluids Applied to Chemical Enhanced Oil Recovery Based on the Surfactant-Nanoparticle-Brine Interaction: From Laboratory Experiments to Oil Field Application. Franco CA; Giraldo LJ; Candela CH; Bernal KM; Villamil F; Montes D; Lopera SH; Franco CA; Cortés FB Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32796762 [TBL] [Abstract][Full Text] [Related]
34. Optimized method for preparation of TiO2 nanoparticles dispersion for biological study. Zhang X; Yin L; Tang M; Pu Y J Nanosci Nanotechnol; 2010 Aug; 10(8):5213-9. PubMed ID: 21125873 [TBL] [Abstract][Full Text] [Related]
35. A kind of nanofluid consisting of surface-functionalized nanoparticles. Yang X; Liu ZH Nanoscale Res Lett; 2010 May; 5(8):1324-8. PubMed ID: 20676194 [TBL] [Abstract][Full Text] [Related]
36. Theoretical and Experimental Study on the Preparation of High-Viscosity Magnetic Nanofluid by Combined Surfactants. Chen N; Li D; Nie S ACS Omega; 2024 Aug; 9(31):33522-33527. PubMed ID: 39130547 [TBL] [Abstract][Full Text] [Related]
37. Partial Discharge in Nanofluid Insulation Material with Conductive and Semiconductive Nanoparticles. Makmud MZH; Illias HA; Chee CY; Dabbak SZA Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30861988 [TBL] [Abstract][Full Text] [Related]
38. Titania Nanofluids Based on Natural Ester: Cooling and Insulation Properties Assessment. Olmo C; Méndez C; Ortiz F; Delgado F; Ortiz A Nanomaterials (Basel); 2020 Mar; 10(4):. PubMed ID: 32224919 [TBL] [Abstract][Full Text] [Related]
39. Ultrasonic preparation, stability and thermal conductivity of a capped copper-methanol nanofluid. Graves JE; Latvytė E; Greenwood A; Emekwuru NG Ultrason Sonochem; 2019 Jul; 55():25-31. PubMed ID: 31084788 [TBL] [Abstract][Full Text] [Related]
40. Research on Creeping Flashover Characteristics of Nanofluid-Impregnated Pressboard Modified Based on Fe₃O₄ Nanoparticles under Lightning Impulse Voltages. Shan B; Huang M; Ying Y; Niu M; Sun Q; Lv Y; Li C; Qi B; Xing Z Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30987104 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]