These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 27882588)
21. Rhododendrol-induced leukoderma update I: Clinical findings and treatment. Matsunaga K; Suzuki K; Ito A; Tanemura A; Abe Y; Suzuki T; Yoshikawa M; Sumikawa Y; Yagami A; Masui Y; Inoue S; Ito S; Katayama I J Dermatol; 2021 Jul; 48(7):961-968. PubMed ID: 33686651 [TBL] [Abstract][Full Text] [Related]
22. Possible involvement of CCR4+ CD8+ T cells and elevated plasma CCL22 and CCL17 in patients with rhododenol-induced leukoderma. Nishioka M; Tanemura A; Yang L; Tanaka A; Arase N; Katayama I J Dermatol Sci; 2015 Mar; 77(3):188-90. PubMed ID: 25766765 [No Abstract] [Full Text] [Related]
23. Guide for medical professionals (i.e., dermatologists) for the management of Rhododenol-induced leukoderma. Nishigori C; Aoyama Y; Ito A; Suzuki K; Suzuki T; Tanemura A; Ito M; Katayama I; Oiso N; Kagohashi Y; Sugiura S; Fukai K; Funasaka Y; Yamashita T; Matsunaga K J Dermatol; 2015 Feb; 42(2):113-28. PubMed ID: 25622988 [TBL] [Abstract][Full Text] [Related]
24. A framework to mitigate the risk of chemical leukoderma: Consumer products. Bjerke DL; Wu S; Wakamatsu K; Ito S; Wang J; Laughlin T; Hakozaki T Regul Toxicol Pharmacol; 2022 Jun; 131():105157. PubMed ID: 35292310 [TBL] [Abstract][Full Text] [Related]
25. The spectrophotometrical analysis of rhododendrol-induced leucoderma using a novel multispectral camera. Inoue M; Kikuchi K; Watabe A; Yamasaki K; Aiba S Br J Dermatol; 2016 Aug; 175(2):334-9. PubMed ID: 26991967 [TBL] [Abstract][Full Text] [Related]
26. Spectrophotometer is useful for assessing vitiligo and chemical leukoderma severity by quantifying color difference with surrounding normally pigmented skin. Hayashi M; Okamura K; Araki Y; Suzuki M; Tanaka T; Abe Y; Nakano S; Yoshizawa J; Hozumi Y; Inoie M; Suzuki T Skin Res Technol; 2018 May; 24(2):175-179. PubMed ID: 29057565 [TBL] [Abstract][Full Text] [Related]
27. Melanocyte-specific cytotoxic T lymphocytes in patients with rhododendrol-induced leukoderma. Fujiyama T; Ikeya S; Ito T; Tatsuno K; Aoshima M; Kasuya A; Sakabe J; Suzuki T; Tokura Y J Dermatol Sci; 2015 Mar; 77(3):190-2. PubMed ID: 25724360 [No Abstract] [Full Text] [Related]
28. Immunohistopathological analysis of frizzled-4-positive immature melanocytes from hair follicles of patients with Rhododenol-induced leukoderma. Okamura K; Ohe R; Abe Y; Ueki M; Hozumi Y; Tamiya G; Matsunaga K; Yamakawa M; Suzuki T J Dermatol Sci; 2015 Nov; 80(2):156-8. PubMed ID: 26277630 [No Abstract] [Full Text] [Related]
29. 4-(4-Hydroxyphenyl)-2-butanol (rhododendrol)-induced melanocyte cytotoxicity is enhanced by UVB exposure through generation of oxidative stress. Goto N; Tsujimoto M; Nagai H; Masaki T; Ito S; Wakamatsu K; Nishigori C Exp Dermatol; 2018 Jul; 27(7):754-762. PubMed ID: 29630780 [TBL] [Abstract][Full Text] [Related]
30. Rhododendrol-induced leukoderma accompanied by allergic contact dermatitis caused by a non-rhododendrol skin-lightening agent, 5,5'-dipropylbiphenyl-2,2'-diol. Yagami A; Suzuki K; Sano A; Takahashi M; Kobayashi T; Morita Y; Ando A; Iwata Y; Matsunaga K J Dermatol; 2015 Jul; 42(7):739-40. PubMed ID: 25875673 [No Abstract] [Full Text] [Related]
31. Depigmentation therapy in vitiligo universalis with topical 4-methoxyphenol and the Q-switched ruby laser. Njoo MD; Vodegel RM; Westerhof W J Am Acad Dermatol; 2000 May; 42(5 Pt 1):760-9. PubMed ID: 10775851 [TBL] [Abstract][Full Text] [Related]
33. Depigmentation of the skin induced by 4-(4-hydroxyphenyl)-2-butanol is spontaneously re-pigmented in brown and black guinea pigs. Kuroda Y; Takahashi Y; Sakaguchi H; Matsunaga K; Suzuki T J Toxicol Sci; 2014 Aug; 39(4):615-23. PubMed ID: 25056786 [TBL] [Abstract][Full Text] [Related]
34. 4-(4-hydroroxyphenyl)-2-butanol (rhododendrol) activates the autophagy-lysosome pathway in melanocytes: insights into the mechanisms of rhododendrol-induced leukoderma. Yang L; Yang F; Wataya-Kaneda M; Tanemura A; Tsuruta D; Katayama I J Dermatol Sci; 2015 Mar; 77(3):182-5. PubMed ID: 25680854 [No Abstract] [Full Text] [Related]
35. Rapid repigmentation after depigmentation therapy: vitiligo treated with monobenzyl ether of hydroquinone. Oakley AM Australas J Dermatol; 1996 May; 37(2):96-8. PubMed ID: 8687336 [TBL] [Abstract][Full Text] [Related]
36. Janus kinase inhibitor tofacitinib does not facilitate the repigmentation in mouse model of rhododendrol-induced vitiligo. Hayashi M; Okamura K; Abe Y; Hozumi Y; Suzuki T J Dermatol; 2019 Jun; 46(6):548-550. PubMed ID: 30969438 [No Abstract] [Full Text] [Related]
37. Confetti-like depigmentation: A potential sign of rapidly progressing vitiligo. Sosa JJ; Currimbhoy SD; Ukoha U; Sirignano S; O'Leary R; Vandergriff T; Hynan LS; Pandya AG J Am Acad Dermatol; 2015 Aug; 73(2):272-5. PubMed ID: 26054430 [TBL] [Abstract][Full Text] [Related]
38. Depigmentation patterns of nonsegmental vitiligo: a prospective study of macromorphologic changes in lesions. Menchini G; Comacchi C; Cappugi P; Torchia D Am J Clin Dermatol; 2013 Feb; 14(1):55-9. PubMed ID: 23329080 [TBL] [Abstract][Full Text] [Related]
39. T-Cell Responses to Tyrosinase-Derived Self-Peptides in Patients with Leukoderma Induced by Rhododendrol: Implications for Immunotherapy Targeting Melanoma. Takagi R; Kawano M; Nakamura K; Tsuchida T; Matsushita S Dermatology; 2016; 232(1):44-9. PubMed ID: 26613259 [TBL] [Abstract][Full Text] [Related]
40. Long-term follow-up of patients undergoing autologous noncultured melanocyte-keratinocyte transplantation for vitiligo and other leukodermas. Silpa-Archa N; Griffith JL; Huggins RH; Henderson MD; Kerr HA; Jacobsen G; Mulekar SV; Lim HW; Hamzavi IH J Am Acad Dermatol; 2017 Aug; 77(2):318-327. PubMed ID: 28502377 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]