BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 27882844)

  • 1. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation.
    Halder S; Mukhopadhyay C
    J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Study of Differences between Antifreeze Activity of Type-III Antifreeze Protein from Ocean Pout and Its Mutant.
    Kumari S; Muthachikavil AV; Tiwari JK; Punnathanam SN
    Langmuir; 2020 Mar; 36(9):2439-2448. PubMed ID: 32069407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein.
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2014 May; 118(18):4743-52. PubMed ID: 24725212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ice-binding site of surface-bound type III antifreeze protein partially decoupled from water.
    Verreault D; Alamdari S; Roeters SJ; Pandey R; Pfaendtner J; Weidner T
    Phys Chem Chem Phys; 2018 Oct; 20(42):26926-26933. PubMed ID: 30260363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight.
    Chakraborty S; Jana B
    Phys Chem Chem Phys; 2019 Sep; 21(35):19298-19310. PubMed ID: 31451813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of a type III antifreeze protein and its mutants on methane hydrate adsorption-inhibition: a molecular dynamics simulation study.
    Maddah M; Maddah M; Peyvandi K
    Phys Chem Chem Phys; 2019 Oct; 21(39):21836-21846. PubMed ID: 31552400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR study of the antifreeze activities of active and inactive isoforms of a type III antifreeze protein.
    Choi SR; Seo YJ; Kim M; Eo Y; Ahn HC; Lee AR; Park CJ; Ryu KS; Cheong HK; Lee SS; Jin E; Lee JH
    FEBS Lett; 2016 Dec; 590(23):4202-4212. PubMed ID: 27718246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of antifreeze proteins on the ice/water interface.
    Todde G; Hovmöller S; Laaksonen A
    J Phys Chem B; 2015 Feb; 119(8):3407-13. PubMed ID: 25611783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of the type III antifreeze protein action: a computational study.
    Yang C; Sharp KA
    Biophys Chem; 2004 Apr; 109(1):137-48. PubMed ID: 15059666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of ice-like water structure on the surface of an antifreeze protein.
    Smolin N; Daggett V
    J Phys Chem B; 2008 May; 112(19):6193-202. PubMed ID: 18336017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water structure and dynamics in the hydration layer of a type III anti-freeze protein.
    Brotzakis ZF; Voets IK; Bakker HJ; Bolhuis PG
    Phys Chem Chem Phys; 2018 Mar; 20(10):6996-7006. PubMed ID: 29468240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Polar and Nonpolar Groups in the Activity of Antifreeze Proteins: A Molecular Dynamics Simulation Study.
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2018 Oct; 122(40):9389-9398. PubMed ID: 30222341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The refined crystal structure of an eel pout type III antifreeze protein RD1 at 0.62-A resolution reveals structural microheterogeneity of protein and solvation.
    Ko TP; Robinson H; Gao YG; Cheng CH; DeVries AL; Wang AH
    Biophys J; 2003 Feb; 84(2 Pt 1):1228-37. PubMed ID: 12547803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ice-binding mechanism of winter flounder antifreeze proteins.
    Cheng A; Merz KM
    Biophys J; 1997 Dec; 73(6):2851-73. PubMed ID: 9414201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice.
    DeLuca CI; Davies PL; Ye Q; Jia Z
    J Mol Biol; 1998 Jan; 275(3):515-25. PubMed ID: 9466928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified Langmuir isotherm for a two-domain adsorbate: derivation and application to antifreeze proteins.
    Can O; Holland NB
    J Colloid Interface Sci; 2009 Jan; 329(1):24-30. PubMed ID: 18945440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of solvation water around the active and inactive regions of a type III antifreeze protein and its mutants of lowered activity.
    Grabowska J; Kuffel A; Zielkiewicz J
    J Chem Phys; 2016 Aug; 145(7):075101. PubMed ID: 27544127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the mechanism of ice binding by type III antifreeze proteins.
    Antson AA; Smith DJ; Roper DI; Lewis S; Caves LS; Verma CS; Buckley SL; Lillford PJ; Hubbard RE
    J Mol Biol; 2001 Jan; 305(4):875-89. PubMed ID: 11162099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice.
    Chao H; Sönnichsen FD; DeLuca CI; Sykes BD; Davies PL
    Protein Sci; 1994 Oct; 3(10):1760-9. PubMed ID: 7849594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Water Density at Non-Ice-Binding Surfaces Contributes to the Hyperactivity of Antifreeze Proteins.
    Biswas AD; Barone V; Daidone I
    J Phys Chem Lett; 2021 Sep; 12(36):8777-8783. PubMed ID: 34491750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.