These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 27882929)
1. Soluble IL-33 receptor sST2 inhibits colorectal cancer malignant growth by modifying the tumour microenvironment. Akimoto M; Maruyama R; Takamaru H; Ochiya T; Takenaga K Nat Commun; 2016 Nov; 7():13589. PubMed ID: 27882929 [TBL] [Abstract][Full Text] [Related]
2. IL-33 promotes growth and liver metastasis of colorectal cancer in mice by remodeling the tumor microenvironment and inducing angiogenesis. Zhang Y; Davis C; Shah S; Hughes D; Ryan JC; Altomare D; Peña MM Mol Carcinog; 2017 Jan; 56(1):272-287. PubMed ID: 27120577 [TBL] [Abstract][Full Text] [Related]
3. ST2 Signaling in the Tumor Microenvironment. Chang CP; Hu MH; Hsiao YP; Wang YC Adv Exp Med Biol; 2020; 1240():83-93. PubMed ID: 32060890 [TBL] [Abstract][Full Text] [Related]
4. Role of the IL-33/ST2L axis in colorectal cancer progression. Akimoto M; Takenaga K Cell Immunol; 2019 Sep; 343():103740. PubMed ID: 29329638 [TBL] [Abstract][Full Text] [Related]
5. Cancer cell-derived interleukin-33 decoy receptor sST2 enhances orthotopic tumor growth in a murine pancreatic cancer model. Takenaga K; Akimoto M; Koshikawa N; Nagase H PLoS One; 2020; 15(4):e0232230. PubMed ID: 32340025 [TBL] [Abstract][Full Text] [Related]
6. The correlation between immune subtypes and consensus molecular subtypes in colorectal cancer identifies novel tumour microenvironment profiles, with prognostic and therapeutic implications. Soldevilla B; Carretero-Puche C; Gomez-Lopez G; Al-Shahrour F; Riesco MC; Gil-Calderon B; Alvarez-Vallina L; Espinosa-Olarte P; Gomez-Esteves G; Rubio-Cuesta B; Sarmentero J; La Salvia A; Garcia-Carbonero R Eur J Cancer; 2019 Dec; 123():118-129. PubMed ID: 31678770 [TBL] [Abstract][Full Text] [Related]
7. Hypoxia induces downregulation of the tumor-suppressive sST2 in colorectal cancer cells via the HIF-nuclear IL-33-GATA3 pathway. Akimoto M; Susa T; Okudaira N; Koshikawa N; Hisaki H; Iizuka M; Okinaga H; Takenaga K; Okazaki T; Tamamori-Adachi M Proc Natl Acad Sci U S A; 2023 May; 120(18):e2218033120. PubMed ID: 37094129 [TBL] [Abstract][Full Text] [Related]
8. Soluble ST2 suppresses IL-5 production by human basophilic KU812 cells, induced by epithelial cell-derived IL-33. Matsumoto K; Kouzaki H; Kikuoka H; Kato T; Tojima I; Shimizu S; Shimizu T Allergol Int; 2018 Sep; 67S():S32-S37. PubMed ID: 29941231 [TBL] [Abstract][Full Text] [Related]
9. ST2 as checkpoint target for colorectal cancer immunotherapy. Van der Jeught K; Sun Y; Fang Y; Zhou Z; Jiang H; Yu T; Yang J; Kamocka MM; So KM; Li Y; Eyvani H; Sandusky GE; Frieden M; Braun H; Beyaert R; He X; Zhang X; Zhang C; Paczesny S; Lu X JCI Insight; 2020 May; 5(9):. PubMed ID: 32376804 [TBL] [Abstract][Full Text] [Related]
10. IL-33 Promotes the Development of Colorectal Cancer Through Inducing Tumor-Infiltrating ST2L Zhou Y; Ji Y; Wang H; Zhang H; Zhou H Technol Cancer Res Treat; 2018 Jan; 17():1533033818780091. PubMed ID: 29950152 [TBL] [Abstract][Full Text] [Related]
11. Interleukin-33 enhances programmed oncosis of ST2L-positive low-metastatic cells in the tumour microenvironment of lung cancer. Akimoto M; Hayashi JI; Nakae S; Saito H; Takenaga K Cell Death Dis; 2016 Jan; 7(1):e2057. PubMed ID: 26775708 [TBL] [Abstract][Full Text] [Related]
12. IL-33/ST2 correlates with severity of haemorrhagic fever with renal syndrome and regulates the inflammatory response in Hantaan virus-infected endothelial cells. Zhang Y; Zhang C; Zhuang R; Ma Y; Zhang Y; Yi J; Yang A; Jin B PLoS Negl Trop Dis; 2015 Feb; 9(2):e0003514. PubMed ID: 25658420 [TBL] [Abstract][Full Text] [Related]
13. The role of the IL-33/ST2 axis in autoimmune disorders: Friend or foe? Liu X; Xiao Y; Pan Y; Li H; Zheng SG; Su W Cytokine Growth Factor Rev; 2019 Dec; 50():60-74. PubMed ID: 31085085 [TBL] [Abstract][Full Text] [Related]
14. P2X7R promotes angiogenesis and tumour-associated macrophage recruitment by regulating the NF-κB signalling pathway in colorectal cancer cells. Yang C; Shi S; Su Y; Tong JS; Li L J Cell Mol Med; 2020 Sep; 24(18):10830-10841. PubMed ID: 32735377 [TBL] [Abstract][Full Text] [Related]
15. High plasma sST2 levels in gastric cancer and their association with metastatic disease. Bergis D; Kassis V; Radeke HH Cancer Biomark; 2016; 16(1):117-25. PubMed ID: 26835712 [TBL] [Abstract][Full Text] [Related]
16. Interleukin-6 increases expression of serine protease inhibitor Kazal type 1 through STAT3 in colorectal adenocarcinoma. Räsänen K; Lehtinen E; Nokelainen K; Kuopio T; Hautala L; Itkonen O; Stenman UH; Koistinen H Mol Carcinog; 2016 Dec; 55(12):2010-2023. PubMed ID: 26663388 [TBL] [Abstract][Full Text] [Related]
17. Upregulation of circadian gene 'hClock' contribution to metastasis of colorectal cancer. Wang Y; Sun N; Lu C; Bei Y; Qian R; Hua L Int J Oncol; 2017 Jun; 50(6):2191-2199. PubMed ID: 28498393 [TBL] [Abstract][Full Text] [Related]
18. Identification of Novel Biomarkers for Metastatic Colorectal Cancer Using Angiogenesis-Antibody Array and Intracellular Signaling Array. Chung S; Dwabe S; Elshimali Y; Sukhija H; Aroh C; Vadgama JV PLoS One; 2015; 10(8):e0134948. PubMed ID: 26258407 [TBL] [Abstract][Full Text] [Related]
19. Tumor suppressor ARF regulates tissue microenvironment and tumor growth through modulation of macrophage polarization. Jiménez-García L; Herranz S; Higueras MA; Luque A; Hortelano S Oncotarget; 2016 Oct; 7(41):66835-66850. PubMed ID: 27572316 [TBL] [Abstract][Full Text] [Related]
20. Stat6 activity-related Th2 cytokine profile and tumor growth advantage of human colorectal cancer cells in vitro and in vivo. Li BH; Xu SB; Li F; Zou XG; Saimaiti A; Simayi D; Wang YH; Zhang Y; Yuan J; Zhang WJ Cell Signal; 2012 Mar; 24(3):718-25. PubMed ID: 22108090 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]