BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27883128)

  • 1. Modeling the archetype cysteine protease reaction using dispersion corrected density functional methods in ONIOM-type hybrid QM/MM calculations; the proteolytic reaction of papain.
    Fekete A; Komáromi I
    Phys Chem Chem Phys; 2016 Dec; 18(48):32847-32861. PubMed ID: 27883128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QM/MM study of the active site of free papain and of the NMA-papain complex.
    Han WG; Tajkhorshid E; Suhai S
    J Biomol Struct Dyn; 1999 Apr; 16(5):1019-32. PubMed ID: 10333172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular modeling of substrate-enzyme reactions for the cysteine protease papain.
    Lin Y; Welsh WJ
    J Mol Graph; 1996 Apr; 14(2):62-72, 92-3. PubMed ID: 8835773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction pathway and free energy profile for papain-catalyzed hydrolysis of N-acetyl-Phe-Gly 4-nitroanilide.
    Wei D; Huang X; Liu J; Tang M; Zhan CG
    Biochemistry; 2013 Jul; 52(30):5145-54. PubMed ID: 23862626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the mechanism of the cell wall DD-carboxypeptidase reaction of penicillin-binding protein 5 of Escherichia coli by quantum mechanics/molecular mechanics calculations.
    Shi Q; Meroueh SO; Fisher JF; Mobashery S
    J Am Chem Soc; 2008 Jul; 130(29):9293-303. PubMed ID: 18576637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase.
    Romanyuk ND; Rigden DJ; Vatamaniuk OK; Lang A; Cahoon RE; Jez JM; Rea PA
    Plant Physiol; 2006 Jul; 141(3):858-69. PubMed ID: 16714405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process.
    Ishida T; Kato S
    J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Asp102 in the catalytic relay system of serine proteases: a theoretical study.
    Ishida T; Kato S
    J Am Chem Soc; 2004 Jun; 126(22):7111-8. PubMed ID: 15174882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD
    Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic-Level Description of the Covalent Inhibition of SARS-CoV-2 Papain-like Protease.
    Hognon C; Marazzi M; García-Iriepa C
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenging a paradigm: theoretical calculations of the protonation state of the Cys25-His159 catalytic diad in free papain.
    Shokhen M; Khazanov N; Albeck A
    Proteins; 2009 Dec; 77(4):916-26. PubMed ID: 19688822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin.
    Hermann JC; Hensen C; Ridder L; Mulholland AJ; Höltje HD
    J Am Chem Soc; 2005 Mar; 127(12):4454-65. PubMed ID: 15783228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical studies on the deacylation step of serine protease catalysis in the gas phase, in solution, and in elastase.
    Topf M; Richards WG
    J Am Chem Soc; 2004 Nov; 126(44):14631-41. PubMed ID: 15521783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of chloromethyl ketone substrate analogues to crystalline papain.
    Drenth J; Kalk KH; Swen HM
    Biochemistry; 1976 Aug; 15(17):3731-8. PubMed ID: 952885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of papain inhibition by peptidyl aldehydes.
    Shokhen M; Khazanov N; Albeck A
    Proteins; 2011 Mar; 79(3):975-85. PubMed ID: 21181719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic properties in the catalytic site of papain: A possible regulatory mechanism for the reactivity of the ion pair.
    Dardenne LE; Werneck AS; de Oliveira Neto M; Bisch PM
    Proteins; 2003 Aug; 52(2):236-53. PubMed ID: 12833547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of interactions involved in the generation of nucleophilic reactivity and of catalytic competence in the catalytic site Cys/His ion pair of papain.
    Hussain S; Khan A; Gul S; Resmini M; Verma CS; Thomas EW; Brocklehurst K
    Biochemistry; 2011 Dec; 50(49):10732-42. PubMed ID: 22044167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alpha-helix dipoles and catalysis: absorption and Raman spectroscopic studies of acyl cysteine proteases.
    Doran JD; Carey PR
    Biochemistry; 1996 Sep; 35(38):12495-502. PubMed ID: 8823185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the Catalytic Reaction of Cysteine Proteases.
    Oanca G; Asadi M; Saha A; Ramachandran B; Warshel A
    J Phys Chem B; 2020 Dec; 124(50):11349-11356. PubMed ID: 33264018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.