BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 27883138)

  • 1. Characterization of size-dependent mechanical properties of tip-growing cells using a lab-on-chip device.
    Hu C; Munglani G; Vogler H; Ndinyanka Fabrice T; Shamsudhin N; Wittel FK; Ringli C; Grossniklaus U; Herrmann HJ; Nelson BJ
    Lab Chip; 2016 Dec; 17(1):82-90. PubMed ID: 27883138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Massively Parallelized Pollen Tube Guidance and Mechanical Measurements on a Lab-on-a-Chip Platform.
    Shamsudhin N; Laeubli N; Atakan HB; Vogler H; Hu C; Haeberle W; Sebastian A; Grossniklaus U; Nelson BJ
    PLoS One; 2016; 11(12):e0168138. PubMed ID: 27977748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of the Young's modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC).
    Nezhad AS; Naghavi M; Packirisamy M; Bhat R; Geitmann A
    Lab Chip; 2013 Jul; 13(13):2599-608. PubMed ID: 23571308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fountain streaming contributes to fast tip-growth through regulating the gradients of turgor pressure and concentration in pollen tubes.
    Liu S; Liu H; Feng S; Lin M; Xu F; Lu TJ
    Soft Matter; 2017 Apr; 13(16):2919-2927. PubMed ID: 28352884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling.
    Sanati Nezhad A; Naghavi M; Packirisamy M; Bhat R; Geitmann A
    Proc Natl Acad Sci U S A; 2013 May; 110(20):8093-8. PubMed ID: 23630253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous measurement of turgor pressure and cell wall elasticity in growing pollen tubes.
    Vogler H; Burri JT; Nelson BJ; Grossniklaus U
    Methods Cell Biol; 2020; 160():297-310. PubMed ID: 32896323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pollen tube: a soft shell with a hard core.
    Vogler H; Draeger C; Weber A; Felekis D; Eichenberger C; Routier-Kierzkowska AL; Boisson-Dernier A; Ringli C; Nelson BJ; Smith RS; Grossniklaus U
    Plant J; 2013 Feb; 73(4):617-27. PubMed ID: 23106269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feeling the force: how pollen tubes deal with obstacles.
    Burri JT; Vogler H; Läubli NF; Hu C; Grossniklaus U; Nelson BJ
    New Phytol; 2018 Oct; 220(1):187-195. PubMed ID: 29905972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High precision, localized proton gradients and fluxes generated by a microelectrode device induce differential growth behaviors of pollen tubes.
    Hu C; Vogler H; Aellen M; Shamsudhin N; Jang B; Burri JT; Läubli N; Grossniklaus U; Pané S; Nelson BJ
    Lab Chip; 2017 Feb; 17(4):671-680. PubMed ID: 28098283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lab-on-a-chip for studying growing pollen tubes.
    Agudelo CG; Packirisamy M; Geitmann A
    Methods Mol Biol; 2014; 1080():237-48. PubMed ID: 24132434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of microfluidics for studying growth mechanisms of tip growing pollen tubes.
    Nezhad AS; Packirisamy M; Geitmann A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6175-8. PubMed ID: 25571407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic positioning of pollen grains in lab-on-a-chip for single cell analysis.
    Ghanbari M; Nezhad AS; Agudelo CG; Packirisamy M; Geitmann A
    J Biosci Bioeng; 2014 Apr; 117(4):504-11. PubMed ID: 24231375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of Mechanical Forces and Physiological Processes Involved in Pollen Tube Growth Using Microfluidics and Microrobotics.
    Burri JT; Munglani G; Nelson BJ; Grossniklaus U; Vogler H
    Methods Mol Biol; 2020; 2160():275-292. PubMed ID: 32529444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actin fringe is correlated with tip growth velocity of pollen tubes.
    Dong H; Pei W; Haiyun R
    Mol Plant; 2012 Sep; 5(5):1160-2. PubMed ID: 22863760
    [No Abstract]   [Full Text] [Related]  

  • 15. Morphogenesis of complex plant cell shapes: the mechanical role of crystalline cellulose in growing pollen tubes.
    Aouar L; Chebli Y; Geitmann A
    Sex Plant Reprod; 2010 Mar; 23(1):15-27. PubMed ID: 20165960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties.
    Zerzour R; Kroeger J; Geitmann A
    Dev Biol; 2009 Oct; 334(2):437-46. PubMed ID: 19666018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Durotropic Growth of Pollen Tubes.
    Reimann R; Kah D; Mark C; Dettmer J; Reimann TM; Gerum RC; Geitmann A; Fabry B; Dietrich P; Kost B
    Plant Physiol; 2020 Jun; 183(2):558-569. PubMed ID: 32241878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pollen-specific SKP1-like proteins are components of functional scf complexes and essential for lily pollen tube elongation.
    Chang LC; Guo CL; Lin YS; Fu H; Wang CS; Jauh GY
    Plant Cell Physiol; 2009 Aug; 50(8):1558-72. PubMed ID: 19578169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pollen tube growth and guidance: roles of small, secreted proteins.
    Chae K; Lord EM
    Ann Bot; 2011 Sep; 108(4):627-36. PubMed ID: 21307038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes.
    McKenna ST; Kunkel JG; Bosch M; Rounds CM; Vidali L; Winship LJ; Hepler PK
    Plant Cell; 2009 Oct; 21(10):3026-40. PubMed ID: 19861555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.