These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 27883194)

  • 1. Matworld - the biogeochemical effects of early life on land.
    Lenton TM; Daines SJ
    New Phytol; 2017 Jul; 215(2):531-537. PubMed ID: 27883194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Earliest land plants created modern levels of atmospheric oxygen.
    Lenton TM; Dahl TW; Daines SJ; Mills BJ; Ozaki K; Saltzman MR; Porada P
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9704-9. PubMed ID: 27528678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benthic perspective on Earth's oldest evidence for oxygenic photosynthesis.
    Lalonde SV; Konhauser KO
    Proc Natl Acad Sci U S A; 2015 Jan; 112(4):995-1000. PubMed ID: 25583484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypothesized link between Neoproterozoic greening of the land surface and the establishment of an oxygen-rich atmosphere.
    Kump LR
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14062-5. PubMed ID: 25225378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesophilic microorganisms build terrestrial mats analogous to Precambrian microbial jungles.
    Finke N; Simister RL; O'Neil AH; Nomosatryo S; Henny C; MacLean LC; Canfield DE; Konhauser K; Lalonde SV; Fowle DA; Crowe SA
    Nat Commun; 2019 Sep; 10(1):4323. PubMed ID: 31541087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryptogamic ground covers as analogues for early terrestrial biospheres: Initiation and evolution of biologically mediated proto-soils.
    Mitchell RL; Strullu-Derrien C; Sykes D; Pressel S; Duckett JG; Kenrick P
    Geobiology; 2021 May; 19(3):292-306. PubMed ID: 33569915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Land plants equilibrate O2 and CO2 concentrations in the atmosphere.
    Igamberdiev AU; Lea PJ
    Photosynth Res; 2006 Feb; 87(2):177-94. PubMed ID: 16432665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A paleosol record of the evolution of Cr redox cycling and evidence for an increase in atmospheric oxygen during the Neoproterozoic.
    Colwyn DA; Sheldon ND; Maynard JB; Gaines R; Hofmann A; Wang X; Gueguen B; Asael D; Reinhard CT; Planavsky NJ
    Geobiology; 2019 Nov; 17(6):579-593. PubMed ID: 31436043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric oxygenation three billion years ago.
    Crowe SA; Døssing LN; Beukes NJ; Bau M; Kruger SJ; Frei R; Canfield DE
    Nature; 2013 Sep; 501(7468):535-8. PubMed ID: 24067713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogeochemistry of dihydrogen (H2).
    Hoehler TM
    Met Ions Biol Syst; 2005; 43():9-48. PubMed ID: 16370113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering.
    Mills B; Lenton TM; Watson AJ
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9073-8. PubMed ID: 24927553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary ecology during the rise of dioxygen in the Earth's atmosphere.
    Sleep NH; Bird DK
    Philos Trans R Soc Lond B Biol Sci; 2008 Aug; 363(1504):2651-64. PubMed ID: 18468980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.
    Hamilton TL; Bryant DA; Macalady JL
    Environ Microbiol; 2016 Feb; 18(2):325-40. PubMed ID: 26549614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constraining the role of early land plants in Palaeozoic weathering and global cooling.
    Quirk J; Leake JR; Johnson DA; Taylor LL; Saccone L; Beerling DJ
    Proc Biol Sci; 2015 Aug; 282(1813):20151115. PubMed ID: 26246550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global biogeochemical changes at both ends of the proterozoic: insights from phosphorites.
    Papineau D
    Astrobiology; 2010 Mar; 10(2):165-81. PubMed ID: 20105035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogeochemical transformations after the emergence of oxygenic photosynthesis and conditions for the first rise of atmospheric oxygen.
    Watanabe Y; Tajika E; Ozaki K
    Geobiology; 2023 Sep; 21(5):537-555. PubMed ID: 36960595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental drivers of soil microbial community structure and function at the Avon River Critical Zone Observatory.
    Gleeson D; Mathes F; Farrell M; Leopold M
    Sci Total Environ; 2016 Nov; 571():1407-18. PubMed ID: 27432724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbiology of the atmosphere-rock interface: how biological interactions and physical stresses modulate a sophisticated microbial ecosystem.
    Gorbushina AA; Broughton WJ
    Annu Rev Microbiol; 2009; 63():431-50. PubMed ID: 19575564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogeochemical Transformations in the History of the Ocean.
    Lenton TM; Daines SJ
    Ann Rev Mar Sci; 2017 Jan; 9():31-58. PubMed ID: 27575740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a more physiological representation of vegetation phosphorus processes in land surface models.
    Jiang M; Caldararu S; Zaehle S; Ellsworth DS; Medlyn BE
    New Phytol; 2019 May; 222(3):1223-1229. PubMed ID: 30659603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.