These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A thalamo-cortical neural mass model for the simulation of brain rhythms during sleep. Cona F; Lacanna M; Ursino M J Comput Neurosci; 2014 Aug; 37(1):125-48. PubMed ID: 24402459 [TBL] [Abstract][Full Text] [Related]
6. Cortically-induced coherence of a thalamic-generated oscillation. Destexhe A; Contreras D; Steriade M Neuroscience; 1999; 92(2):427-43. PubMed ID: 10408595 [TBL] [Abstract][Full Text] [Related]
7. Seizures and Sleep in the Thalamus: Focal Limbic Seizures Show Divergent Activity Patterns in Different Thalamic Nuclei. Feng L; Motelow JE; Ma C; Biche W; McCafferty C; Smith N; Liu M; Zhan Q; Jia R; Xiao B; Duque A; Blumenfeld H J Neurosci; 2017 Nov; 37(47):11441-11454. PubMed ID: 29066556 [TBL] [Abstract][Full Text] [Related]
8. Thalamic synchrony and dynamic regulation of global forebrain oscillations. Huguenard JR; McCormick DA Trends Neurosci; 2007 Jul; 30(7):350-6. PubMed ID: 17544519 [TBL] [Abstract][Full Text] [Related]
9. The activity of thalamus and cerebral cortex neurons in rabbits during "slow wave-spindle" EEG complexes. Burikov AA; Bereshpolova YuI Neurosci Behav Physiol; 1999; 29(2):143-9. PubMed ID: 10432501 [TBL] [Abstract][Full Text] [Related]
10. Cortical and subcortical generators of normal and abnormal rhythmicity. McCormick DA Int Rev Neurobiol; 2002; 49():99-114. PubMed ID: 12040908 [TBL] [Abstract][Full Text] [Related]
11. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Contreras D; Destexhe A; Sejnowski TJ; Steriade M Science; 1996 Nov; 274(5288):771-4. PubMed ID: 8864114 [TBL] [Abstract][Full Text] [Related]
13. Altered thalamic GABAA-receptor subunit expression in the stargazer mouse model of absence epilepsy. Seo S; Leitch B Epilepsia; 2014 Feb; 55(2):224-32. PubMed ID: 24417662 [TBL] [Abstract][Full Text] [Related]
14. Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity. Steriade M; Contreras D J Neurosci; 1995 Jan; 15(1 Pt 2):623-42. PubMed ID: 7823168 [TBL] [Abstract][Full Text] [Related]
15. Reciprocal inhibitory connections and network synchrony in the mammalian thalamus. Huntsman MM; Porcello DM; Homanics GE; DeLorey TM; Huguenard JR Science; 1999 Jan; 283(5401):541-3. PubMed ID: 9915702 [TBL] [Abstract][Full Text] [Related]
16. Differentiated participation of thalamocortical subnetworks in slow/spindle waves and desynchronization. Ushimaru M; Ueta Y; Kawaguchi Y J Neurosci; 2012 Feb; 32(5):1730-46. PubMed ID: 22302813 [TBL] [Abstract][Full Text] [Related]
17. Sleep oscillations and their blockage by activating systems. Steriade M J Psychiatry Neurosci; 1994 Nov; 19(5):354-8. PubMed ID: 7803369 [TBL] [Abstract][Full Text] [Related]
18. Coupled slow and delta oscillations between cuneothalamic and thalamocortical neurons in the chloralose anesthetized cat. Mariño J; Martinez L; Canedo A Neurosci Lett; 1996 Nov; 219(2):107-10. PubMed ID: 8971791 [TBL] [Abstract][Full Text] [Related]
19. A computational model of thalamocortical dysrhythmia. Henning Proske J; Jeanmonod D; Verschure PF Eur J Neurosci; 2011 Apr; 33(7):1281-90. PubMed ID: 21323765 [TBL] [Abstract][Full Text] [Related]
20. Rhythmic modulation of thalamic oscillations depends on intrinsic cellular dynamics. Li G; Henriquez CS; Fröhlich F J Neural Eng; 2019 Feb; 16(1):016013. PubMed ID: 30524080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]