BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 27884495)

  • 1. A homogenization model of the Voigt type for skeletal muscle.
    Spyrou LA; Agoras M; Danas K
    J Theor Biol; 2017 Feb; 414():50-61. PubMed ID: 27884495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale modeling of skeletal muscle tissues based on analytical and numerical homogenization.
    Spyrou LA; Brisard S; Danas K
    J Mech Behav Biomed Mater; 2019 Apr; 92():97-117. PubMed ID: 30677705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle.
    Grasa J; Ramírez A; Osta R; Muñoz MJ; Soteras F; Calvo B
    Biomech Model Mechanobiol; 2011 Oct; 10(5):779-87. PubMed ID: 21127938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructural analysis of skeletal muscle force generation during aging.
    Zhang Y; Chen JS; He Q; He X; Basava RR; Hodgson J; Sinha U; Sinha S
    Int J Numer Method Biomed Eng; 2020 Jan; 36(1):e3295. PubMed ID: 31820588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: linked fiber-matrix mesh model.
    Yucesoy CA; Koopman BH; Huijing PA; Grootenboer HJ
    J Biomech; 2002 Sep; 35(9):1253-62. PubMed ID: 12163314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element modeling of aponeurotomy: altered intramuscular myofascial force transmission yields complex sarcomere length distributions determining acute effects.
    Yucesoy CA; Koopman BH; Grootenboer HJ; Huijing PA
    Biomech Model Mechanobiol; 2007 Jul; 6(4):227-43. PubMed ID: 16897102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale modeling of passive material influences on deformation and force output of skeletal muscles.
    He X; Taneja K; Chen JS; Lee CH; Hodgson J; Malis V; Sinha U; Sinha S
    Int J Numer Method Biomed Eng; 2022 Apr; 38(4):e3571. PubMed ID: 35049153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active finite element analysis of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction.
    Tsui CP; Tang CY; Leung CP; Cheng KW; Ng YF; Chow DH; Li CK
    Biomed Mater Eng; 2004; 14(3):271-9. PubMed ID: 15299239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale modeling of skeletal muscle to explore its passive mechanical properties and experiments verification.
    Liu F; Wang M; Ma Y
    Math Biosci Eng; 2022 Jan; 19(2):1251-1279. PubMed ID: 35135203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A validated model of passive skeletal muscle to predict force and intramuscular pressure.
    Wheatley BB; Odegard GM; Kaufman KR; Haut Donahue TL
    Biomech Model Mechanobiol; 2017 Jun; 16(3):1011-1022. PubMed ID: 28040867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A finite-element model for the mechanical analysis of skeletal muscles.
    Johansson T; Meier P; Blickhan R
    J Theor Biol; 2000 Sep; 206(1):131-49. PubMed ID: 10968943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of active skeletal muscle tissue with a transversely isotropic viscohyperelastic continuum material model.
    Khodaei H; Mostofizadeh S; Brolin K; Johansson H; Osth J
    Proc Inst Mech Eng H; 2013 May; 227(5):571-80. PubMed ID: 23637267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromechanics and constitutive modeling of connective soft tissues.
    Fallah A; Ahmadian MT; Firozbakhsh K; Aghdam MM
    J Mech Behav Biomed Mater; 2016 Jul; 60():157-176. PubMed ID: 26807767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 3D electro-mechanical continuum model for simulating skeletal muscle contraction.
    Hernández-Gascón B; Grasa J; Calvo B; Rodríguez JF
    J Theor Biol; 2013 Oct; 335():108-18. PubMed ID: 23820034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nonlinear dynamic finite element approach for simulating muscular hydrostats.
    Vavourakis V; Kazakidi A; Tsakiris DP; Ekaterinaris JA
    Comput Methods Biomech Biomed Engin; 2014; 17(8):917-31. PubMed ID: 23025686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An inverse model of the mechanical response of passive skeletal muscle: Implications for microstructure.
    Valentin T; Simms C
    J Biomech; 2020 Jan; 99():109483. PubMed ID: 31727374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling Skeletal Muscle Stress and Intramuscular Pressure: A Whole Muscle Active-Passive Approach.
    Wheatley BB; Odegard GM; Kaufman KR; Haut Donahue TL
    J Biomech Eng; 2018 Aug; 140(8):0810061-8. PubMed ID: 30003256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Techniques for modeling muscle-induced forces in finite element models of skeletal structures.
    Grosse IR; Dumont ER; Coletta C; Tolleson A
    Anat Rec (Hoboken); 2007 Sep; 290(9):1069-88. PubMed ID: 17721980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A visco-hyperelastic model for skeletal muscle tissue under high strain rates.
    Lu YT; Zhu HX; Richmond S; Middleton J
    J Biomech; 2010 Sep; 43(13):2629-32. PubMed ID: 20566197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel constitutive model of skeletal muscle taking into account anisotropic damage.
    Ito D; Tanaka E; Yamamoto S
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):85-93. PubMed ID: 19878905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.