BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 27884516)

  • 1. Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings: Transformations during the leaching process.
    Ye M; Yan P; Sun S; Han D; Xiao X; Zheng L; Huang S; Chen Y; Zhuang S
    Chemosphere; 2017 Feb; 168():1115-1125. PubMed ID: 27884516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans.
    Lee E; Han Y; Park J; Hong J; Silva RA; Kim S; Kim H
    J Environ Manage; 2015 Jan; 147():124-31. PubMed ID: 25262394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation.
    Ye M; Li G; Yan P; Ren J; Zheng L; Han D; Sun S; Huang S; Zhong Y
    Chemosphere; 2017 Oct; 185():1189-1196. PubMed ID: 28772358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching.
    Liu YG; Zhou M; Zeng GM; Li X; Xu WH; Fan T
    J Hazard Mater; 2007 Mar; 141(1):202-8. PubMed ID: 16887262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimization of metal sulphides bioleaching from mine wastes into the aquatic environment.
    Piervandi Z; Khodadadi Darban A; Mousavi SM; Abdollahy M; Asadollahfardi G; Funari V; Dinelli E
    Ecotoxicol Environ Saf; 2019 Oct; 182():109443. PubMed ID: 31398782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture.
    Wang J; Bai J; Xu J; Liang B
    J Hazard Mater; 2009 Dec; 172(2-3):1100-5. PubMed ID: 19699031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: effects of substrate concentration.
    Liu YG; Zhou M; Zeng GM; Wang X; Li X; Fan T; Xu WH
    Bioresour Technol; 2008 Jul; 99(10):4124-9. PubMed ID: 17951054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans.
    Kumar RN; Nagendran R
    Chemosphere; 2007 Jan; 66(9):1775-81. PubMed ID: 16979697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching of heavy metals from lead-zinc mine tailings and the subsequent migration and transformation characteristics in paddy soil.
    Sun R; Gao Y; Yang Y
    Chemosphere; 2022 Mar; 291(Pt 1):132792. PubMed ID: 34748803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Performance of Bioleaching Combined with Fenton-like Reaction in Heavy Metals Removal from Contaminated Soil].
    Zhou PX; Yan X; Yu Z; Wang YQ; Zhu Y; Zhou SG
    Huan Jing Ke Xue; 2016 Sep; 37(9):3575-3581. PubMed ID: 29964795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of kinetics and operating parameters for the bioleaching of heavy metals from sewage sludge, using co-inoculation of two Acidithiobacillus species.
    Li H; Ye M; Zheng L; Xu Y; Sun S; Du Q; Zhong Y; Ye S; Zhang D
    Water Sci Technol; 2018 May; 2017(2):390-403. PubMed ID: 29851391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial influence on storage and mobilisation of metals in iron-rich mine tailings from the Salobo mine, Brazil.
    Henne A; Craw D; Gagen EJ; Southam G
    Sci Total Environ; 2019 Aug; 680():91-104. PubMed ID: 31100671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Unión mining district (SE Spain).
    Conesa HM; Faz A; Arnaldos R
    Sci Total Environ; 2006 Jul; 366(1):1-11. PubMed ID: 16499952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans.
    Naresh Kumar R; Nagendran R
    J Hazard Mater; 2009 Sep; 169(1-3):1119-26. PubMed ID: 19464109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain.
    Rodríguez L; Ruiz E; Alonso-Azcárate J; Rincón J
    J Environ Manage; 2009 Feb; 90(2):1106-16. PubMed ID: 18572301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of valuable metals from polymetallic mine tailings by natural microbial consortium.
    Vardanyan N; Sevoyan G; Navasardyan T; Vardanyan A
    Environ Technol; 2019 Nov; 40(26):3467-3472. PubMed ID: 29781399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation and risk assessment modeling of As and other heavy metals contamination around five abandoned metal mines in Korea.
    Kim JY; Kim KW; Ahn JS; Ko I; Lee CH
    Environ Geochem Health; 2005 Apr; 27(2):193-203. PubMed ID: 16003587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioleaching in batch tests for improving sludge dewaterability and metal removal using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans after cold acclimation.
    Zhou Q; Gao J; Li Y; Zhu S; He L; Nie W; Zhang R
    Water Sci Technol; 2017 Sep; 76(5-6):1347-1359. PubMed ID: 28953461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioleaching for detoxification of waste flotation tailings: Relationship between EPS substances and bioleaching behavior.
    Ye M; Liang J; Liao X; Li L; Feng X; Qian W; Zhou S; Sun S
    J Environ Manage; 2021 Feb; 279():111795. PubMed ID: 33338773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.