These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 2788462)

  • 21. The myofibril as a model for muscle fiber ATPase.
    Lionne C; Herrmann C; Travers F; Barman T
    Biophys J; 1995 Apr; 68(4 Suppl):217S. PubMed ID: 7787073
    [No Abstract]   [Full Text] [Related]  

  • 22. Dependency of the force-velocity relationships on Mg ATP in different types of muscle fibers from Xenopus laevis.
    Stienen GJ; van der Laarse WJ; Elzinga G
    Biophys J; 1988 Jun; 53(6):849-55. PubMed ID: 3260802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrastructure and contractile properties of isolated myofibrils and myofilaments from drosophila flight muscle.
    Goode MD
    Trans Am Microsc Soc; 1972 Apr; 91(2):182-94. PubMed ID: 4623213
    [No Abstract]   [Full Text] [Related]  

  • 24. Fine structure and contraction of isolated muscle actomyosin. I. Evidence for a sliding mechanism by means of oligomeric myosin.
    D'Haese J; Komnick H
    Z Zellforsch Mikrosk Anat; 1972; 134(3):411-26. PubMed ID: 4638296
    [No Abstract]   [Full Text] [Related]  

  • 25. The molecular basis of contractility. II.
    Goody RS; Mannherz HG
    Basic Res Cardiol; 1974; 69(2):204-13. PubMed ID: 4603206
    [No Abstract]   [Full Text] [Related]  

  • 26. [Effect of heat on the contractility and ATPase activity of frog phasic and tonic fibrils].
    Vasil'eva VV
    Tsitologiia; 1972 May; 14(5):598-602. PubMed ID: 4260832
    [No Abstract]   [Full Text] [Related]  

  • 27. Force transmission in skeletal muscle: from actomyosin to external tendons.
    Patel TJ; Lieber RL
    Exerc Sport Sci Rev; 1997; 25():321-63. PubMed ID: 9213097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fine structure and contraction of isolated muscle actomyosin. 2. Formation of myosin filaments and their effect on contraction.
    D'Haese J; Komnick H
    Z Zellforsch Mikrosk Anat; 1972; 134(3):427-34. PubMed ID: 4638297
    [No Abstract]   [Full Text] [Related]  

  • 29. [Nucleotide exchange on the F-actin component of muscle fibrils in the states of contraction, relaxation, and rigor. The exchange as argument in the discussion of the contractile mechanism].
    Appenheimer M; von Chak D; Weber HH
    Biochim Biophys Acta; 1972 Mar; 256(3):681-94. PubMed ID: 5020237
    [No Abstract]   [Full Text] [Related]  

  • 30. [Dependence of the rate of myofibril contraction on MgATP concentration. A theoretical examination].
    Korchagin VP
    Biofizika; 1994; 39(4):695-701. PubMed ID: 7981278
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modification of myofibrils by fluorophore-induced photo-oxidation.
    Knight P; Parsons N
    J Muscle Res Cell Motil; 1991 Apr; 12(2):183-91. PubMed ID: 1829462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron microscope studies on the dissociation of actomyosin by pyrophosphate.
    Winkelhahn JM; Beinbrech G
    Experientia; 1974 Apr; 30(4):350-2. PubMed ID: 4366008
    [No Abstract]   [Full Text] [Related]  

  • 33. High-speed ultrasensitive instrumentation for myofibril mechanics measurements.
    Iwazumi T
    Am J Physiol; 1987 Feb; 252(2 Pt 1):C253-62. PubMed ID: 3826338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of ryanodine on model systems derived from muscle. I. Glycerol-extracted muscle fibers.
    Elison C; Jenden DJ
    Biochem Pharmacol; 1967 Jul; 16(7):1339-45. PubMed ID: 6053600
    [No Abstract]   [Full Text] [Related]  

  • 35. The participation of parvalbumins in the activation-relaxation cycle of vertebrate fast skeletal-muscle.
    Pechère JF; Derancourt J; Haiech J
    FEBS Lett; 1977 Mar; 75(1):111-4. PubMed ID: 404185
    [No Abstract]   [Full Text] [Related]  

  • 36. Effect of calcium ions on the flexibility of reconstituted thin filaments of muscle studied by quasielastic scattering of laser light.
    Ishiwata S; Fujime S
    J Mol Biol; 1972 Jul; 68(3):511-22. PubMed ID: 4672238
    [No Abstract]   [Full Text] [Related]  

  • 37. Pyruvate decarboxylation and its relationship to contraction of cardiac myofibrils.
    Diaz de Arce H; Crevasse L; Shipp JC
    Am J Physiol; 1966 Jun; 210(6):1396-400. PubMed ID: 5332219
    [No Abstract]   [Full Text] [Related]  

  • 38. Optical diffraction studies on stimulated single fibres of frog muscle (Hyla caerulea).
    Borejdo J; Mason P; Unsworth J
    Experientia; 1974 Apr; 30(4):373-4. PubMed ID: 4837620
    [No Abstract]   [Full Text] [Related]  

  • 39. [Effect of a component of light meromyosin on thick filament structure].
    Kalamkarova MB; Samosudova NV; Filatova LG; Nankina VP
    Dokl Akad Nauk SSSR; 1979; 246(2):489-92. PubMed ID: 380949
    [No Abstract]   [Full Text] [Related]  

  • 40. [The causes for changes in optical properties of myofibril suspensions during relaxation].
    Iudin IuK; Shelud'ko NS
    Biofizika; 1990; 35(4):605-9. PubMed ID: 2245224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.