These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 27885336)

  • 1. Investigation of Structural Dynamics of Enzymes and Protonation States of Substrates Using Computational Tools.
    Chang CA; Huang YM; Mueller LJ; You W
    Catalysts; 2016 Jun; 6(6):. PubMed ID: 27885336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protonation states and catalysis: Molecular dynamics studies of intermediates in tryptophan synthase.
    Huang YM; You W; Caulkins BG; Dunn MF; Mueller LJ; Chang CE
    Protein Sci; 2016 Jan; 25(1):166-83. PubMed ID: 26013176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The protonation state of catalytic residues in the resting state of KasA revisited: detailed mechanism for the activation of KasA by its own substrate.
    Lee W; Engels B
    Biochemistry; 2014 Feb; 53(5):919-31. PubMed ID: 24479625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clarification on the decarboxylation mechanism in KasA based on the protonation state of key residues in the acyl-enzyme state.
    Lee W; Engels B
    J Phys Chem B; 2013 Jul; 117(27):8095-104. PubMed ID: 23768199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidation of the protonation states of the catalytic residues in mtKasA: implications for inhibitor design.
    Lee W; Luckner SR; Kisker C; Tonge PJ; Engels B
    Biochemistry; 2011 Jun; 50(25):5743-56. PubMed ID: 21615093
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Verma R; Mitchell-Koch K
    Catalysts; 2017; 7(7):. PubMed ID: 30464857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncoupling of an ammonia channel as a mechanism of allosteric inhibition in anthranilate synthase of Serratia marcescens: dynamic and graph theoretical analysis.
    Srivastava A; Sinha S
    Mol Biosyst; 2016 Dec; 13(1):142-155. PubMed ID: 27833951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspectives on electrostatics and conformational motions in enzyme catalysis.
    Hanoian P; Liu CT; Hammes-Schiffer S; Benkovic S
    Acc Chem Res; 2015 Feb; 48(2):482-9. PubMed ID: 25565178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic regulation and ligand-induced conformational changes of tryptophan synthase.
    Fatmi MQ; Ai R; Chang CE
    Biochemistry; 2009 Oct; 48(41):9921-31. PubMed ID: 19764814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic Insight into how β-Ketoacyl ACP Synthase I (KasA) Recognizes the Fatty Acid Chain Length of its Substrate.
    Lee W
    Chempluschem; 2023 Nov; ():e202300568. PubMed ID: 37983623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active site dynamics and combined quantum mechanics/molecular mechanics (QM/MM) modelling of a HIV-1 reverse transcriptase/DNA/dTTP complex.
    Rungrotmongkol T; Mulholland AJ; Hannongbua S
    J Mol Graph Model; 2007 Jul; 26(1):1-13. PubMed ID: 17046299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revised mechanism of carboxylation of ribulose-1,5-biphosphate by rubisco from large scale quantum chemical calculations.
    Cummins PL; Kannappan B; Gready JE
    J Comput Chem; 2018 Aug; 39(21):1656-1665. PubMed ID: 29756365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting Functional Dynamics in Proteins with Comparative Perturbed-Ensembles Analysis.
    Yao XQ; Hamelberg D
    Acc Chem Res; 2019 Dec; 52(12):3455-3464. PubMed ID: 31793290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetically most likely substrate and active-site protonation sites and pathways in the catalytic mechanism of dihydrofolate reductase.
    Cummins PL; Gready JE
    J Am Chem Soc; 2001 Apr; 123(15):3418-28. PubMed ID: 11472112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The O
    Askerka M; Brudvig GW; Batista VS
    Acc Chem Res; 2017 Jan; 50(1):41-48. PubMed ID: 28001034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flap Dynamics in Aspartic Proteases: A Computational Perspective.
    Mahanti M; Bhakat S; Nilsson UJ; Söderhjelm P
    Chem Biol Drug Des; 2016 Aug; 88(2):159-77. PubMed ID: 26872937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational state distributions and catalytically relevant dynamics of a hinge-bending enzyme studied by single-molecule FRET and a coarse-grained simulation.
    Gabba M; Poblete S; Rosenkranz T; Katranidis A; Kempe D; Züchner T; Winkler RG; Gompper G; Fitter J
    Biophys J; 2014 Oct; 107(8):1913-1923. PubMed ID: 25418172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring Allosteric Pathways of a V-Type Enzyme with Dynamical Perturbation Networks.
    Gheeraert A; Pacini L; Batista VS; Vuillon L; Lesieur C; Rivalta I
    J Phys Chem B; 2019 Apr; 123(16):3452-3461. PubMed ID: 30943726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protonation States of Homocitrate and Nearby Residues in Nitrogenase Studied by Computational Methods and Quantum Refinement.
    Cao L; Caldararu O; Ryde U
    J Phys Chem B; 2017 Sep; 121(35):8242-8262. PubMed ID: 28783353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.