These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 27885528)

  • 1. A network biology approach to understanding the importance of chameleon proteins in human physiology and pathology.
    Bahramali G; Goliaei B; Minuchehr Z; Marashi SA
    Amino Acids; 2017 Feb; 49(2):303-315. PubMed ID: 27885528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chameleon sequences in neurodegenerative diseases.
    Bahramali G; Goliaei B; Minuchehr Z; Salari A
    Biochem Biophys Res Commun; 2016 Mar; 472(1):209-16. PubMed ID: 26920059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of chameleon sequences and their implications in biological processes.
    Guo JT; Jaromczyk JW; Xu Y
    Proteins; 2007 May; 67(3):548-58. PubMed ID: 17299764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network analysis and cross species comparison of protein-protein interaction networks of human, mouse and rat cytochrome P450 proteins that degrade xenobiotics.
    Karthikeyan BS; Akbarsha MA; Parthasarathy S
    Mol Biosyst; 2016 Jun; 12(7):2119-34. PubMed ID: 27194593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Certain heptapeptide and large sequences representing an entire helix, strand or coil conformation in proteins are associated as chameleon sequences.
    Krishna N; Guruprasad K
    Int J Biol Macromol; 2011 Aug; 49(2):218-22. PubMed ID: 21569793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discerning molecular interactions: A comprehensive review on biomolecular interaction databases and network analysis tools.
    Miryala SK; Anbarasu A; Ramaiah S
    Gene; 2018 Feb; 642():84-94. PubMed ID: 29129810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying protein complexes based on multiple topological structures in PPI networks.
    Chen B; Wu FX
    IEEE Trans Nanobioscience; 2013 Sep; 12(3):165-72. PubMed ID: 23974659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyses of Protein Interaction Networks Using Computational Tools.
    Dong S; Provart NJ
    Methods Mol Biol; 2018; 1794():97-117. PubMed ID: 29855953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PICKLE 2.0: A human protein-protein interaction meta-database employing data integration via genetic information ontology.
    Gioutlakis A; Klapa MI; Moschonas NK
    PLoS One; 2017; 12(10):e0186039. PubMed ID: 29023571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examination of the relationship between essential genes in PPI network and hub proteins in reverse nearest neighbor topology.
    Ning K; Ng HK; Srihari S; Leong HW; Nesvizhskii AI
    BMC Bioinformatics; 2010 Oct; 11():505. PubMed ID: 20939873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the relationship between hub proteins and drug targets based on GO and intrinsic disorder.
    Fu Y; Guo Y; Wang Y; Luo J; Pu X; Li M; Zhang Z
    Comput Biol Chem; 2015 Jun; 56():41-8. PubMed ID: 25854804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network simulation reveals significant contribution of network motifs to the age-dependency of yeast protein-protein interaction networks.
    Liang C; Luo J; Song D
    Mol Biosyst; 2014 Jul; 10(9):2277-88. PubMed ID: 24964354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IIIDB: a database for isoform-isoform interactions and isoform network modules.
    Tseng YT; Li W; Chen CH; Zhang S; Chen JJ; Zhou X; Liu CC
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S10. PubMed ID: 25707505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein complex prediction in large ontology attributed protein-protein interaction networks.
    Zhang Y; Lin H; Yang Z; Wang J; Li Y; Xu B
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(3):729-41. PubMed ID: 24091405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discordant and chameleon sequences: their distribution and implications for amyloidogenicity.
    Gendoo DM; Harrison PM
    Protein Sci; 2011 Mar; 20(3):567-79. PubMed ID: 21432934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B; Guan J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):616-27. PubMed ID: 26356332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting protein complexes in a PPI network: a gene ontology based multi-objective evolutionary approach.
    Mukhopadhyay A; Ray S; De M
    Mol Biosyst; 2012 Nov; 8(11):3036-48. PubMed ID: 22990765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational analyses of type 2 diabetes-associated loci identified by genome-wide association studies.
    Cheng M; Liu X; Yang M; Han L; Xu A; Huang Q
    J Diabetes; 2017 Apr; 9(4):362-377. PubMed ID: 27121852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying protein complexes and functional modules--from static PPI networks to dynamic PPI networks.
    Chen B; Fan W; Liu J; Wu FX
    Brief Bioinform; 2014 Mar; 15(2):177-94. PubMed ID: 23780996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein function prediction using guilty by association from interaction networks.
    Piovesan D; Giollo M; Ferrari C; Tosatto SC
    Amino Acids; 2015 Dec; 47(12):2583-92. PubMed ID: 26215734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.