BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 27885875)

  • 1. Epigenomic therapies: the potential of targeting SIRT6 for the treatment of pancreatic cancer.
    Demir IE; Ceyhan GO; Friess H
    Expert Opin Ther Targets; 2017 Jan; 21(1):1-3. PubMed ID: 27885875
    [No Abstract]   [Full Text] [Related]  

  • 2. SIRT6 Suppresses Pancreatic Cancer through Control of Lin28b.
    Kugel S; Sebastián C; Fitamant J; Ross KN; Saha SK; Jain E; Gladden A; Arora KS; Kato Y; Rivera MN; Ramaswamy S; Sadreyev RI; Goren A; Deshpande V; Bardeesy N; Mostoslavsky R
    Cell; 2016 Jun; 165(6):1401-1415. PubMed ID: 27180906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of and Molecular Basis for SIRT6 Loss-of-Function Point Mutations in Cancer.
    Kugel S; Feldman JL; Klein MA; Silberman DM; Sebastián C; Mermel C; Dobersch S; Clark AR; Getz G; Denu JM; Mostoslavsky R
    Cell Rep; 2015 Oct; 13(3):479-488. PubMed ID: 26456828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic targeting in pancreatic cancer.
    van Kampen JG; Marijnissen-van Zanten MA; Simmer F; van der Graaf WT; Ligtenberg MJ; Nagtegaal ID
    Cancer Treat Rev; 2014 Jun; 40(5):656-64. PubMed ID: 24433955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects.
    Yu J; Wu Y; Yang P
    J Neurochem; 2016 May; 137(3):371-83. PubMed ID: 26896748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The histone deacetylase SIRT6 suppresses the expression of the RNA-binding protein PCBP2 in glioma.
    Chen X; Hao B; Liu Y; Dai D; Han G; Li Y; Wu X; Zhou X; Yue Z; Wang L; Cao Y; Liu J
    Biochem Biophys Res Commun; 2014 Mar; 446(1):364-9. PubMed ID: 24607900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. E2F1 enhances glycolysis through suppressing Sirt6 transcription in cancer cells.
    Wu M; Seto E; Zhang J
    Oncotarget; 2015 May; 6(13):11252-63. PubMed ID: 25816777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A crucial role of SUMOylation in modulating Sirt6 deacetylation of H3 at lysine 56 and its tumor suppressive activity.
    Cai J; Zuo Y; Wang T; Cao Y; Cai R; Chen FL; Cheng J; Mu J
    Oncogene; 2016 Sep; 35(37):4949-56. PubMed ID: 26898756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current and Emerging Targeting Strategies for Treatment of Pancreatic Cancer.
    Baines AT; Martin PM; Rorie CJ
    Prog Mol Biol Transl Sci; 2016; 144():277-320. PubMed ID: 27865460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Genetics and Genomic Data on Pancreatic Neuroendocrine Tumors: Implications for Diagnosis, Treatment, and Targeted Therapies.
    Schmitt AM; Marinoni I; Blank A; Perren A
    Endocr Pathol; 2016 Sep; 27(3):200-4. PubMed ID: 27456058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA Targeted Therapeutic Approach for Pancreatic Cancer.
    Li Y; Sarkar FH
    Int J Biol Sci; 2016; 12(3):326-37. PubMed ID: 26929739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The sirtuin SIRT6 regulates stress granule formation in C. elegans and mammals.
    Jedrusik-Bode M; Studencka M; Smolka C; Baumann T; Schmidt H; Kampf J; Paap F; Martin S; Tazi J; Müller KM; Krüger M; Braun T; Bober E
    J Cell Sci; 2013 Nov; 126(Pt 22):5166-77. PubMed ID: 24013546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deacetylation of Ku70 by SIRT6 attenuates Bax-mediated apoptosis in hepatocellular carcinoma.
    Tao NN; Ren JH; Tang H; Ran LK; Zhou HZ; Liu B; Huang AL; Chen J
    Biochem Biophys Res Commun; 2017 Apr; 485(4):713-719. PubMed ID: 28238784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenomic networking in drug development: from pathogenic mechanisms to pharmacogenomics.
    Cacabelos R
    Drug Dev Res; 2014 Sep; 75(6):348-65. PubMed ID: 25195579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sirtuin 6 suppresses hypoxia-induced inflammatory response in human osteoblasts via inhibition of reactive oxygen species production and glycolysis-A therapeutic implication in inflammatory bone resorption.
    Hou KL; Lin SK; Chao LH; Hsiang-Hua Lai E; Chang CC; Shun CT; Lu WY; Wang JH; Hsiao M; Hong CY; Kok SH
    Biofactors; 2017 Mar; 43(2):170-180. PubMed ID: 27534902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New targeted therapies in pancreatic cancer.
    Seicean A; Petrusel L; Seicean R
    World J Gastroenterol; 2015 May; 21(20):6127-45. PubMed ID: 26034349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The RUNX2 Transcription Factor Negatively Regulates SIRT6 Expression to Alter Glucose Metabolism in Breast Cancer Cells.
    Choe M; Brusgard JL; Chumsri S; Bhandary L; Zhao XF; Lu S; Goloubeva OG; Polster BM; Fiskum GM; Girnun GD; Kim MS; Passaniti A
    J Cell Biochem; 2015 Oct; 116(10):2210-26. PubMed ID: 25808624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong Correlation between the Expression Levels of HDAC4 and SIRT6 in Hematological Malignancies of the Adults.
    Gaál Z; Oláh É; Rejtő L; Erdődi F; Csernoch L
    Pathol Oncol Res; 2017 Jul; 23(3):493-504. PubMed ID: 27766571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SIRT6 Suppresses Cancer Stem-like Capacity in Tumors with PI3K Activation Independently of Its Deacetylase Activity.
    Ioris RM; Galié M; Ramadori G; Anderson JG; Charollais A; Konstantinidou G; Brenachot X; Aras E; Goga A; Ceglia N; Sebastián C; Martinvalet D; Mostoslavsky R; Baldi P; Coppari R
    Cell Rep; 2017 Feb; 18(8):1858-1868. PubMed ID: 28228253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic regulation of NKG2D ligands is involved in exacerbated atherosclerosis development in Sirt6 heterozygous mice.
    Zhang ZQ; Ren SC; Tan Y; Li ZZ; Tang X; Wang TT; Hao DL; Zhao X; Chen HZ; Liu DP
    Sci Rep; 2016 Apr; 6():23912. PubMed ID: 27045575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.