These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 27885881)

  • 1. Spectral analysis of hearing protector impulsive insertion loss.
    Fackler CJ; Berger EH; Murphy WJ; Stergar ME
    Int J Audiol; 2017; 56(sup1):13-21. PubMed ID: 27885881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an auditory situation awareness test battery for advanced hearing protectors and TCAPS: detection subtest of DRILCOM (detection-recognition/identification-localization-communication).
    Lee K; Casali JG
    Int J Audiol; 2017; 56(sup1):22-33. PubMed ID: 27905220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of impulse peak insertion loss from two acoustic test fixtures and four hearing protector conditions with an acoustic shock tube.
    Murphy WJ; Fackler CJ; Berger EH; Shaw PB; Stergar M
    Noise Health; 2015; 17(78):364-73. PubMed ID: 26356380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occluded insertion loss from intracochlear pressure measurements during acoustic shock wave exposure.
    Anderson DA; Argo TF; Greene NT
    Hear Res; 2023 Feb; 428():108669. PubMed ID: 36565603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An acoustic head simulator for hearing protector evaluation. II: Measurements in steady-state and impulse noise environments.
    Giguère C; Kunov H
    J Acoust Soc Am; 1989 Mar; 85(3):1197-205. PubMed ID: 2708666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of impulse peak insertion loss for four hearing protection devices in field conditions.
    Murphy WJ; Flamme GA; Meinke DK; Sondergaard J; Finan DS; Lankford JE; Khan A; Vernon J; Stewart M
    Int J Audiol; 2012 Feb; 51 Suppl 1(0 1):S31-42. PubMed ID: 22176308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attenuation characteristics of an extended-wear hearing aid: Impulse and continuous noise.
    Brungart DS; Spencer NJ; Pryor N; Abouzahra N; McKenna EA; Iyer N
    J Acoust Soc Am; 2020 Sep; 148(3):1404. PubMed ID: 33003895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of a field microphone-in-real-ear approach for measuring hearing protector attenuation.
    Berger EH; Voix J; Kieper RW; Le Cocq C
    Noise Health; 2011; 13(51):163-75. PubMed ID: 21368442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory risk of air rifles.
    Lankford JE; Meinke DK; Flamme GA; Finan DS; Stewart M; Tasko S; Murphy WJ
    Int J Audiol; 2016; 55 Suppl 1(Suppl 1):S51-8. PubMed ID: 26840923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-ear and on-body measurements of impulse-noise exposure.
    Davis SK; Calamia PT; Murphy WJ; Smalt CJ
    Int J Audiol; 2019 Feb; 58(sup1):S49-S57. PubMed ID: 30614318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attenuation of high-level impulses by earmuffs.
    Zera J; Mlynski R
    J Acoust Soc Am; 2007 Oct; 122(4):2082-96. PubMed ID: 17902846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symphony orchestra musicians' use of hearing protection and attenuation of custom-made hearing protectors as measured with two different real-ear attenuation at threshold methods.
    Huttunen KH; Sivonen VP; Poykko VT
    Noise Health; 2011; 13(51):176-88. PubMed ID: 21368443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporary changes in hearing after exposure to shooting noise.
    Pawlaczyk-Luszczyńska M; Dudarewicz A; Bak M; Fiszer M; Kotyło P; Sliwińska-Kowalska M
    Int J Occup Med Environ Health; 2004; 17(2):285-93. PubMed ID: 15387085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reduction of gunshot noise and auditory risk through the use of firearm suppressors and low-velocity ammunition.
    Murphy WJ; Flamme GA; Campbell AR; Zechmann EL; Tasko SM; Lankford JE; Meinke DK; Finan DS; Stewart M
    Int J Audiol; 2018 Feb; 57(sup1):S28-S41. PubMed ID: 29299940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise reduction at the shooting range by means of level-dependent hearing protectors.
    Młyński R; Kozłowski E
    Med Pr; 2019 Jun; 70(3):265-273. PubMed ID: 30887954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a new standard laboratory protocol for estimation of the field attenuation of hearing protection devices: sample size necessary to provide acceptable reproducibility.
    Murphy WJ; Franks JR; Berger EH; Behar A; Casali JG; Dixon-Ernst C; Krieg EF; Mozo BT; Royster JD; Royster LH; Simon SD; Stephenson C
    J Acoust Soc Am; 2004 Jan; 115(1):311-23. PubMed ID: 14759024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hearing protection against high-level shooting impulses in relation to hearing damage risk criteria.
    Pekkarinen JO; Starck JP; Ylikoski JS
    J Acoust Soc Am; 1992 Jan; 91(1):196-202. PubMed ID: 1737871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attenuation of hearing protectors at 85 dB SPL investigated by commercial "insertion gain" method.
    Woxen O; Borchgrevink HM
    Scand Audiol Suppl; 1991; 34():145-55. PubMed ID: 1842461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual Fit Testing of Hearing-Protection Devices Based on Microphones in Real Ears among Workers in Industries with High-Noise-Level Manufacturing.
    Chiu CC; Wan TJ
    Int J Environ Res Public Health; 2020 May; 17(9):. PubMed ID: 32384734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impulse noise and risk criteria.
    Starck J; Toppila E; Pyykkö I
    Noise Health; 2003; 5(20):63-73. PubMed ID: 14558894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.