These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 27886139)
1. Research on the Relationship between Reaction Ability and Mental State for Online Assessment of Driving Fatigue. Guo M; Li S; Wang L; Chai M; Chen F; Wei Y Int J Environ Res Public Health; 2016 Nov; 13(12):. PubMed ID: 27886139 [No Abstract] [Full Text] [Related]
2. Development of an algorithm for an EEG-based driver fatigue countermeasure. Lal SK; Craig A; Boord P; Kirkup L; Nguyen H J Safety Res; 2003; 34(3):321-8. PubMed ID: 12963079 [TBL] [Abstract][Full Text] [Related]
3. [Research on a successively increasing feature selection algorithm of EEG signal for driving fatigue based on SVM]. Xie H; Yang S; Xia B; Yang W; Zhou N Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Dec; 30(6):1321-5. PubMed ID: 24645619 [TBL] [Abstract][Full Text] [Related]
4. Real driving environment EEG-based detection of driving fatigue using the wavelet scattering network. Wang F; Chen D; Yao W; Fu R J Neurosci Methods; 2023 Dec; 400():109983. PubMed ID: 37838152 [TBL] [Abstract][Full Text] [Related]
5. Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males. Chen J; Wang H; Wang Q; Hua C Neuropsychologia; 2019 Jun; 129():200-211. PubMed ID: 30995455 [TBL] [Abstract][Full Text] [Related]
6. Classifying Driving Fatigue by Using EEG Signals. Zeng C; Mu Z; Wang Q Comput Intell Neurosci; 2022; 2022():1885677. PubMed ID: 35371255 [TBL] [Abstract][Full Text] [Related]
7. Monitoring driver fatigue using a single-channel electroencephalographic device: A validation study by gaze-based, driving performance, and subjective data. Morales JM; Díaz-Piedra C; Rieiro H; Roca-González J; Romero S; Catena A; Fuentes LJ; Di Stasi LL Accid Anal Prev; 2017 Dec; 109():62-69. PubMed ID: 29031926 [TBL] [Abstract][Full Text] [Related]
8. EEG and ECG-Based Multi-Sensor Fusion Computing for Real-Time Fatigue Driving Recognition Based on Feedback Mechanism. Wang L; Song F; Zhou TH; Hao J; Ryu KH Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896480 [TBL] [Abstract][Full Text] [Related]
9. Physiological signal analysis for fatigue level of experienced and inexperienced drivers. Li R; Su W; Lu Z Traffic Inj Prev; 2017 Feb; 18(2):139-144. PubMed ID: 27589585 [TBL] [Abstract][Full Text] [Related]
10. Research on driving fatigue detection based on basic scale entropy and MVAR-PSI. Wang F; Kang X; Fu R; Lu B Biomed Phys Eng Express; 2022 Jul; 8(5):. PubMed ID: 35788110 [TBL] [Abstract][Full Text] [Related]
11. Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system. Min J; Wang P; Hu J PLoS One; 2017; 12(12):e0188756. PubMed ID: 29220351 [TBL] [Abstract][Full Text] [Related]
12. EEG alpha spindles and prolonged brake reaction times during auditory distraction in an on-road driving study. Sonnleitner A; Treder MS; Simon M; Willmann S; Ewald A; Buchner A; Schrauf M Accid Anal Prev; 2014 Jan; 62():110-8. PubMed ID: 24144496 [TBL] [Abstract][Full Text] [Related]
13. Can variations in visual behavior measures be good predictors of driver sleepiness? A real driving test study. Wang Y; Xin M; Bai H; Zhao Y Traffic Inj Prev; 2017 Feb; 18(2):132-138. PubMed ID: 27763776 [TBL] [Abstract][Full Text] [Related]
14. A parametric duration model of the reaction times of drivers distracted by mobile phone conversations. Haque MM; Washington S Accid Anal Prev; 2014 Jan; 62():42-53. PubMed ID: 24129320 [TBL] [Abstract][Full Text] [Related]
15. Deep Learning for Detecting Multi-Level Driver Fatigue Using Physiological Signals: A Comprehensive Approach. Peivandi M; Ardabili SZ; Sheykhivand S; Danishvar S Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37837001 [TBL] [Abstract][Full Text] [Related]
16. InstanceEasyTL: An Improved Transfer-Learning Method for EEG-Based Cross-Subject Fatigue Detection. Zeng H; Zhang J; Zakaria W; Babiloni F; Gianluca B; Li X; Kong W Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33348823 [TBL] [Abstract][Full Text] [Related]
17. Estimating Driving Fatigue at a Plateau Area with Frequent and Rapid Altitude Change. Wang F; Chen H; Zhu CH; Nan SR; Li Y Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31731740 [TBL] [Abstract][Full Text] [Related]
18. An iterative cross-subject negative-unlabeled learning algorithm for quantifying passive fatigue. Foong R; Ang KK; Zhang Z; Quek C J Neural Eng; 2019 Aug; 16(5):056013. PubMed ID: 31141797 [TBL] [Abstract][Full Text] [Related]
19. Assessment of mental fatigue during car driving by using high resolution EEG activity and neurophysiologic indices. Borghini G; Vecchiato G; Toppi J; Astolfi L; Maglione A; Isabella R; Caltagirone C; Kong W; Wei D; Zhou Z; Polidori L; Vitiello S; Babiloni F Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6442-5. PubMed ID: 23367404 [TBL] [Abstract][Full Text] [Related]
20. Feature extraction of EEG signals based on functional data analysis and its application to recognition of driver fatigue state. Shangguan P; Qiu T; Liu T; Zou S; Liu Z; Zhang S Physiol Meas; 2021 Jan; 41(12):125004. PubMed ID: 33126235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]