BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27886300)

  • 1. A three-dimensional graphene oxide supramolecular hydrogel for infrared light-responsive cascade release of two anticancer drugs.
    Ha W; Zhao XB; Jiang K; Kang Y; Chen J; Li BJ; Shi YP
    Chem Commun (Camb); 2016 Dec; 52(100):14384-14387. PubMed ID: 27886300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared light triggered release of molecules from supramolecular hydrogel-nanorod composites.
    Highley CB; Kim M; Lee D; Burdick JA
    Nanomedicine (Lond); 2016 Jun; 11(12):1579-90. PubMed ID: 27176049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photothermally triggered on-demand insulin release from reduced graphene oxide modified hydrogels.
    Teodorescu F; Oz Y; Quéniat G; Abderrahmani A; Foulon C; Lecoeur M; Sanyal R; Sanyal A; Boukherroub R; Szunerits S
    J Control Release; 2017 Jan; 246():164-173. PubMed ID: 27984105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D graphene oxide-polymer hydrogel: near-infrared light-triggered active scaffold for reversible cell capture and on-demand release.
    Li W; Wang J; Ren J; Qu X
    Adv Mater; 2013 Dec; 25(46):6737-43. PubMed ID: 24123218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalized graphene oxide-based thermosensitive hydrogel for near-infrared chemo-photothermal therapy on tumor.
    Zhu X; Zhang Y; Huang H; Zhang H; Hou L; Zhang Z
    J Biomater Appl; 2016 Mar; 30(8):1230-41. PubMed ID: 26759390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermosensitive hydrogel based on poly(ether-ester anhydride) nanoparticle as drug delivery system: preparation, characterization and biocompatibility.
    Zhang J; Liang Y; Li N; Li X; Hu R; Xing J; Deng L; Hu F; Dong A
    Colloids Surf B Biointerfaces; 2012 Aug; 96():56-61. PubMed ID: 22516713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near infrared light-responsive and injectable supramolecular hydrogels for on-demand drug delivery.
    Wang X; Wang C; Zhang Q; Cheng Y
    Chem Commun (Camb); 2016 Jan; 52(5):978-81. PubMed ID: 26588349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular hydrogel based on graphene oxides for controlled release system.
    Cheng QY; Han BH
    J Nanosci Nanotechnol; 2013 Feb; 13(2):755-60. PubMed ID: 23646510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH/NIR Light-Controlled Multidrug Release via a Mussel-Inspired Nanocomposite Hydrogel for Chemo-Photothermal Cancer Therapy.
    GhavamiNejad A; SamariKhalaj M; Aguilar LE; Park CH; Kim CS
    Sci Rep; 2016 Sep; 6():33594. PubMed ID: 27646591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Assembly of a Tripodal Triszwitterion Forms a pH-Switchable Hydrogel that Can Reversibly Encapsulate Hydrophobic Guests in Water.
    Jana P; Schmuck C
    Chemistry; 2017 Jan; 23(2):320-326. PubMed ID: 27436083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional hyaluronic acid modified graphene oxide loaded with mitoxantrone for overcoming drug resistance in cancer.
    Hou L; Feng Q; Wang Y; Yang X; Ren J; Shi Y; Shan X; Yuan Y; Wang Y; Zhang Z
    Nanotechnology; 2016 Jan; 27(1):015701. PubMed ID: 26595807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalized graphene hydrogel-based high-performance supercapacitors.
    Xu Y; Lin Z; Huang X; Wang Y; Huang Y; Duan X
    Adv Mater; 2013 Oct; 25(40):5779-84. PubMed ID: 23900931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustained efficacy of paclitaxel nanocrystals in hydrogel depot.
    Park K
    J Control Release; 2016 Aug; 235():393. PubMed ID: 27397604
    [No Abstract]   [Full Text] [Related]  

  • 14. MWNT-hybrided supramolecular hydrogel for hydrophobic camptothecin delivery.
    Mu S; Liang Y; Chen S; Zhang L; Liu T
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():294-9. PubMed ID: 25746273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An injectable, dual pH and oxidation-responsive supramolecular hydrogel for controlled dual drug delivery.
    Cheng X; Jin Y; Sun T; Qi R; Li H; Fan W
    Colloids Surf B Biointerfaces; 2016 May; 141():44-52. PubMed ID: 26851440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable temperature-responsive supramolecular hydrogels formed by prodrugs as a codelivery system.
    Ha W; Yu J; Song XY; Chen J; Shi YP
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10623-30. PubMed ID: 24919142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step reduction and PEGylation of graphene oxide for photothermally controlled drug delivery.
    Chen J; Liu H; Zhao C; Qin G; Xi G; Li T; Wang X; Chen T
    Biomaterials; 2014 Jun; 35(18):4986-95. PubMed ID: 24656608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid.
    Barahuie F; Saifullah B; Dorniani D; Fakurazi S; Karthivashan G; Hussein MZ; Elfghi FM
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():177-185. PubMed ID: 28254283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A small-sized graphene oxide supramolecular assembly for targeted delivery of camptothecin.
    Zhang YM; Cao Y; Yang Y; Chen JT; Liu Y
    Chem Commun (Camb); 2014 Nov; 50(86):13066-9. PubMed ID: 25222700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel.
    Angelopoulou A; Voulgari E; Diamanti EK; Gournis D; Avgoustakis K
    Eur J Pharm Biopharm; 2015 Jun; 93():18-26. PubMed ID: 25817600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.