These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 2788638)

  • 21. Phase-locked response characteristics of single neurons in the frog "cochlear nucleus" to steady-state and sinusoidal-amplitude-modulated tones.
    Feng AS; Lin WY
    J Neurophysiol; 1994 Nov; 72(5):2209-21. PubMed ID: 7884454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Responses of frog midbrain auditory center neurons to exposure to amplitude-modulated tones].
    Bibikov NG; Gorodetskaia ON
    Neirofiziologiia; 1980; 12(3):264-71. PubMed ID: 7402411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Azimuth coding in primary auditory cortex of the cat. I. Spike synchrony versus spike count representations.
    Eggermont JJ; Mossop JE
    J Neurophysiol; 1998 Oct; 80(4):2133-50. PubMed ID: 9772267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coincidence detection in auditory neurons: a possible mechanism to enhance stimulus specificity in the grassfrog.
    Eggermont JJ; Epping WJ
    Hear Res; 1987; 30(2-3):219-30. PubMed ID: 3500160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative analysis of intensity--rate and intensity--latency functions in peripheral auditory nerve fibers of northern leopard frogs (Rana p. pipiens).
    Feng AS
    Hear Res; 1982 Apr; 6(3):241-6. PubMed ID: 6979535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. II. Dependence on the level of temporary threshold shifts.
    Rajan R
    J Neurophysiol; 1988 Aug; 60(2):569-79. PubMed ID: 3171642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Auditory cortical onset responses revisited. II. Response strength.
    Heil P
    J Neurophysiol; 1997 May; 77(5):2642-60. PubMed ID: 9163381
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Binaural interaction in high-frequency neurons in inferior colliculus of the cat: effects of variations in sound pressure level on sensitivity to interaural intensity differences.
    Irvine DR; Gago G
    J Neurophysiol; 1990 Mar; 63(3):570-91. PubMed ID: 2329362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of intense sound exposure on phase locking in the chick (Gallus domesticus) cochlear nerve.
    Furman AC; Avissar M; Saunders JC
    Eur J Neurosci; 2006 Oct; 24(7):2003-10. PubMed ID: 17067297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. I: Effects of variation of stimulus parameters.
    Heil P; Rajan R; Irvine DR
    Hear Res; 1992 Nov; 63(1-2):108-34. PubMed ID: 1464565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of stimulus level on acoustic motion-direction sensitivity in barn owl midbrain neurons.
    Wagner H; Trinath T; Kautz D
    J Neurophysiol; 1994 May; 71(5):1907-16. PubMed ID: 8064356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Response properties of single neurons in the zebra finch auditory midbrain: response patterns, frequency coding, intensity coding, and spike latencies.
    Woolley SM; Casseday JH
    J Neurophysiol; 2004 Jan; 91(1):136-51. PubMed ID: 14523072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Encoding of amplitude modulation in the cochlear nucleus of the cat.
    Rhode WS; Greenberg S
    J Neurophysiol; 1994 May; 71(5):1797-825. PubMed ID: 8064349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Peripheral encoding of behaviorally relevant acoustic signals in a vocal fish: single tones.
    McKibben JR; Bass AH
    J Comp Physiol A; 1999 Jun; 184(6):563-76. PubMed ID: 10418153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response.
    Horwitz AR; Ahlstrom JB; Dubno JR
    Ear Hear; 2007 Sep; 28(5):682-93. PubMed ID: 17804982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coding of amplitude-modulated tones in the central auditory system of catfish.
    Plassmann W
    Hear Res; 1985 Mar; 17(3):209-17. PubMed ID: 4019327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temporal modulation transfer functions in cat primary auditory cortex: separating stimulus effects from neural mechanisms.
    Eggermont JJ
    J Neurophysiol; 2002 Jan; 87(1):305-21. PubMed ID: 11784752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coherent neural activity in the auditory midbrain of the grassfrog.
    Epping WJ; Eggermont JJ
    J Neurophysiol; 1987 May; 57(5):1464-83. PubMed ID: 3495645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectro-temporal characterization of auditory neurons: redundant or necessary.
    Eggermont JJ; Aertsen AM; Hermes DJ; Johannesma PI
    Hear Res; 1981 Sep; 5(1):109-21. PubMed ID: 6976342
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interdependence of spatial and temporal coding in the auditory midbrain.
    Koch U; Grothe B
    J Neurophysiol; 2000 Apr; 83(4):2300-14. PubMed ID: 10758135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.