These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27886470)

  • 1. Stability of High-Density Two-Dimensional Excitons against a Mott Transition in High Magnetic Fields Probed by Coherent Terahertz Spectroscopy.
    Zhang Q; Wang Y; Gao W; Long Z; Watson JD; Manfra MJ; Belyanin A; Kono J
    Phys Rev Lett; 2016 Nov; 117(20):207402. PubMed ID: 27886470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton Mott transition in Si revealed by terahertz spectroscopy.
    Suzuki T; Shimano R
    Phys Rev Lett; 2012 Jul; 109(4):046402. PubMed ID: 23006100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved formation of excitons and electron-hole droplets in si studied using terahertz spectroscopy.
    Suzuki T; Shimano R
    Phys Rev Lett; 2009 Jul; 103(5):057401. PubMed ID: 19792534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of the intraexciton Autler-Townes effect in GaAs/AlGaAs semiconductor quantum wells.
    Wagner M; Schneider H; Stehr D; Winnerl S; Andrews AM; Schartner S; Strasser G; Helm M
    Phys Rev Lett; 2010 Oct; 105(16):167401. PubMed ID: 21231010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation of the mott transition in an optically excited semiconductor quantum well.
    Kappei L; Szczytko J; Morier-Genoud F; Deveaud B
    Phys Rev Lett; 2005 Apr; 94(14):147403. PubMed ID: 15904111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous Metal Phase Emergent on the Verge of an Exciton Mott Transition.
    Sekiguchi F; Mochizuki T; Kim C; Akiyama H; Pfeiffer LN; West KW; Shimano R
    Phys Rev Lett; 2017 Feb; 118(6):067401. PubMed ID: 28234535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical two-dimensional fourier transform spectroscopy of semiconductor quantum wells.
    Cundiff ST; Zhang T; Bristow AD; Karaiskaj D; Dai X
    Acc Chem Res; 2009 Sep; 42(9):1423-32. PubMed ID: 19555068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of Photoinduced Terahertz Gain in GaAs Quantum Wells: Evidence for Radiative Two-Exciton-to-Biexciton Scattering.
    Li X; Yoshioka K; Zhang Q; Peraca NM; Katsutani F; Gao W; Noe GT; Watson JD; Manfra MJ; Katayama I; Takeda J; Kono J
    Phys Rev Lett; 2020 Oct; 125(16):167401. PubMed ID: 33124876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mott transition of excitons in coupled quantum wells.
    Stern M; Garmider V; Umansky V; Bar-Joseph I
    Phys Rev Lett; 2008 Jun; 100(25):256402. PubMed ID: 18643682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast Nanoscopy of High-Density Exciton Phases in WSe
    Siday T; Sandner F; Brem S; Zizlsperger M; Perea-Causin R; Schiegl F; Nerreter S; Plankl M; Merkl P; Mooshammer F; Huber MA; Malic E; Huber R
    Nano Lett; 2022 Mar; 22(6):2561-2568. PubMed ID: 35157466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exciton-exciton correlations revealed by two-quantum, two-dimensional fourier transform optical spectroscopy.
    Stone KW; Turner DB; Gundogdu K; Cundiff ST; Nelson KA
    Acc Chem Res; 2009 Sep; 42(9):1452-61. PubMed ID: 19691277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells.
    Turner DB; Stone KW; Gundogdu K; Nelson KA
    J Chem Phys; 2009 Oct; 131(14):144510. PubMed ID: 19831455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terahertz-induced optical emission of photoexcited undoped GaAs quantum wells.
    Shinokita K; Hirori H; Tanaka K; Mochizuki T; Kim C; Akiyama H; Pfeiffer LN; West KW
    Phys Rev Lett; 2013 Aug; 111(6):067401. PubMed ID: 23971609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Pair of 2D Quantum Liquids: Investigating the Phase Behavior of Indirect Excitons.
    Wrona PR; Rabani E; Geissler PL
    ACS Nano; 2022 Sep; 16(9):15339-15346. PubMed ID: 36069715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Giant Exciton Mott Density in Anatase TiO_{2}.
    Baldini E; Palmieri T; Dominguez A; Rubio A; Chergui M
    Phys Rev Lett; 2020 Sep; 125(11):116403. PubMed ID: 32976006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. T-shaped GaAs quantum-wire lasers and the exciton Mott transition.
    Yoshita M; Liu SM; Okano M; Hayamizu Y; Akiyama H; Pfeiffer LN; West KW
    J Phys Condens Matter; 2007 Jul; 19(29):295217. PubMed ID: 21483069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons.
    Chatterjee S; Ell C; Mosor S; Khitrova G; Gibbs HM; Hoyer W; Kira M; Koch SW; Prineas JP; Stolz H
    Phys Rev Lett; 2004 Feb; 92(6):067402. PubMed ID: 14995274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biexcitonic molecules survive excitons at the Mott transition.
    Shahmohammadi M; Jacopin G; Rossbach G; Levrat J; Feltin E; Carlin JF; Ganière JD; Butté R; Grandjean N; Deveaud B
    Nat Commun; 2014 Oct; 5():5251. PubMed ID: 25341721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super-long life time for 2D cyclotron spin-flip excitons.
    Kulik LV; Gorbunov AV; Zhuravlev AS; Timofeev VB; Dickmann S; Kukushkin IV
    Sci Rep; 2015 May; 5():10354. PubMed ID: 25989313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terahertz radiation by quantum interference of excitons in a one-dimensional Mott insulator.
    Miyamoto T; Kondo A; Inaba T; Morimoto T; You S; Okamoto H
    Nat Commun; 2023 Oct; 14(1):6229. PubMed ID: 37833316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.