These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Arrhenius Crossover Temperature of Glass-Forming Liquids Predicted by an Artificial Neural Network. Galimzyanov BN; Doronina MA; Mokshin AV Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770134 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of supercooled water in confined geometry. Bergman R; Swenson J Nature; 2000 Jan; 403(6767):283-6. PubMed ID: 10659841 [TBL] [Abstract][Full Text] [Related]
7. Correlation between thermodynamic and kinetic fragilities in nonpolymeric glass-forming liquids. Senkov ON; Miracle DB J Chem Phys; 2008 Mar; 128(12):124508. PubMed ID: 18376944 [TBL] [Abstract][Full Text] [Related]
8. Multiple length and time scales of dynamic heterogeneities in model glass-forming liquids: a systematic analysis of multi-point and multi-time correlations. Kim K; Saito S J Chem Phys; 2013 Mar; 138(12):12A506. PubMed ID: 23556757 [TBL] [Abstract][Full Text] [Related]
9. The diffusion, structural relaxation, and fragility of [VIO Tian S; Luo Y; Zhao Z; Deng N; Ren G J Mol Model; 2020 Feb; 26(3):55. PubMed ID: 32036437 [TBL] [Abstract][Full Text] [Related]
10. Volume expansion measurements in metallic liquids and their relation to fragility and glass forming ability: an energy landscape interpretation. Bendert JC; Gangopadhyay AK; Mauro NA; Kelton KF Phys Rev Lett; 2012 Nov; 109(18):185901. PubMed ID: 23215298 [TBL] [Abstract][Full Text] [Related]
11. Control of the fragility of a glass-forming liquid using the liquid-liquid phase transition. Kurita R; Tanaka H Phys Rev Lett; 2005 Aug; 95(6):065701. PubMed ID: 16090963 [TBL] [Abstract][Full Text] [Related]
12. Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Mallamace F; Branca C; Corsaro C; Leone N; Spooren J; Chen SH; Stanley HE Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22457-62. PubMed ID: 21148100 [TBL] [Abstract][Full Text] [Related]
13. From boiling point to glass transition temperature: transport coefficients in molecular liquids follow three-parameter scaling. Schmidtke B; Petzold N; Kahlau R; Hofmann M; Rössler EA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041507. PubMed ID: 23214591 [TBL] [Abstract][Full Text] [Related]
14. Single-particle dynamics near the glass transition of a metallic glass. Lü YJ; Wang WH Phys Rev E; 2016 Dec; 94(6-1):062611. PubMed ID: 28085459 [TBL] [Abstract][Full Text] [Related]
15. Non-Arrhenius behavior and fragile-to-strong transition of glass-forming liquids. Rosa ACP; Cruz C; Santana WS; Brito E; Moret MA Phys Rev E; 2020 Apr; 101(4-1):042131. PubMed ID: 32422727 [TBL] [Abstract][Full Text] [Related]
16. Kinetic and structural fragility-a correlation between structures and dynamics in metallic liquids and glasses. Kelton KF J Phys Condens Matter; 2017 Jan; 29(2):023002. PubMed ID: 27841996 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of glass-forming liquids. XV. Dynamical features of molecular liquids that form ultra-stable glasses by vapor deposition. Chen Z; Richert R J Chem Phys; 2011 Sep; 135(12):124515. PubMed ID: 21974543 [TBL] [Abstract][Full Text] [Related]
18. Correlating the stretched-exponential and super-Arrhenius behaviors in the structural relaxation of glass-forming liquids. Wang L; Li J; Fecht HJ J Phys Condens Matter; 2011 Apr; 23(15):155102. PubMed ID: 21436503 [TBL] [Abstract][Full Text] [Related]
19. Universal correlations between the fragility and interparticle repulsion of glass-forming liquids. Lunkenheimer P; Humann F; Loidl A; Samwer K J Chem Phys; 2020 Sep; 153(12):124507. PubMed ID: 33003757 [TBL] [Abstract][Full Text] [Related]
20. An upper limit to kinetic fragility in glass-forming liquids. Wang LM; Mauro JC J Chem Phys; 2011 Jan; 134(4):044522. PubMed ID: 21280763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]