These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 27886568)

  • 1. Deep sequencing methods for protein engineering and design.
    Wrenbeck EE; Faber MS; Whitehead TA
    Curr Opin Struct Biol; 2017 Aug; 45():36-44. PubMed ID: 27886568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational Protein Engineering Guided by Deep Mutational Scanning.
    Shin H; Cho BK
    Int J Mol Sci; 2015 Sep; 16(9):23094-110. PubMed ID: 26404267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput screening, next generation sequencing and machine learning: advanced methods in enzyme engineering.
    Vanella R; Kovacevic G; Doffini V; Fernández de Santaella J; Nash MA
    Chem Commun (Camb); 2022 Feb; 58(15):2455-2467. PubMed ID: 35107442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explanatory chapter: next generation sequencing.
    Yegnasubramanian S
    Methods Enzymol; 2013; 529():201-8. PubMed ID: 24011047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering and analysis of peptide-recognition domain specificities by phage display and deep sequencing.
    McLaughlin ME; Sidhu SS
    Methods Enzymol; 2013; 523():327-49. PubMed ID: 23422437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epitope Mapping Using Yeast Display and Next Generation Sequencing.
    Van Blarcom T; Rossi A; Foletti D; Sundar P; Pitts S; Melton Z; Telman D; Zhao L; Cheung WL; Berka J; Zhai W; Strop P; Pons J; Rajpal A; Chaparro-Riggers J
    Methods Mol Biol; 2018; 1785():89-118. PubMed ID: 29714014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and sequence/structure mapping of biophysical constraints to protein variation in saturated mutational libraries and protein sequence alignments with a dedicated server.
    Abriata LA; Bovigny C; Dal Peraro M
    BMC Bioinformatics; 2016 Jun; 17(1):242. PubMed ID: 27315797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Massively Parallel Assays and Quantitative Sequence-Function Relationships.
    Kinney JB; McCandlish DM
    Annu Rev Genomics Hum Genet; 2019 Aug; 20():99-127. PubMed ID: 31091417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overcoming component limitations in synthetic biology through transposon-mediated protein engineering.
    Atkinson JT; Wu B; Segatori L; Silberg JJ
    Methods Enzymol; 2019; 621():191-212. PubMed ID: 31128779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomes by design.
    Haimovich AD; Muir P; Isaacs FJ
    Nat Rev Genet; 2015 Sep; 16(9):501-16. PubMed ID: 26260262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning to navigate fitness landscapes for protein engineering.
    Freschlin CR; Fahlberg SA; Romero PA
    Curr Opin Biotechnol; 2022 Jun; 75():102713. PubMed ID: 35413604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive single-genome sequencing: accurate, targeted, next generation sequencing of HIV-1 RNA.
    Boltz VF; Rausch J; Shao W; Hattori J; Luke B; Maldarelli F; Mellors JW; Kearney MF; Coffin JM
    Retrovirology; 2016 Dec; 13(1):87. PubMed ID: 27998286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Next-Generation Sequencing-Based Approaches for Mutation Mapping and Identification in Caenorhabditis elegans.
    Doitsidou M; Jarriault S; Poole RJ
    Genetics; 2016 Oct; 204(2):451-474. PubMed ID: 27729495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UMI-linked consensus sequencing enables phylogenetic analysis of directed evolution.
    Zurek PJ; Knyphausen P; Neufeld K; Pushpanath A; Hollfelder F
    Nat Commun; 2020 Nov; 11(1):6023. PubMed ID: 33243970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What is next generation sequencing?
    Behjati S; Tarpey PS
    Arch Dis Child Educ Pract Ed; 2013 Dec; 98(6):236-8. PubMed ID: 23986538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthogonal NGS for High Throughput Clinical Diagnostics.
    Chennagiri N; White EJ; Frieden A; Lopez E; Lieber DS; Nikiforov A; Ross T; Batorsky R; Hansen S; Lip V; Luquette LJ; Mauceli E; Margulies D; Milos PM; Napolitano N; Nizzari MM; Yu T; Thompson JF
    Sci Rep; 2016 Apr; 6():24650. PubMed ID: 27090146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Application of deep mutational scanning technology in protein research].
    Li Y; Wang Y; Zhang K; Li S
    Sheng Wu Gong Cheng Xue Bao; 2023 Sep; 39(9):3710-3723. PubMed ID: 37805848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput antibody engineering in mammalian cells by CRISPR/Cas9-mediated homology-directed mutagenesis.
    Mason DM; Weber CR; Parola C; Meng SM; Greiff V; Kelton WJ; Reddy ST
    Nucleic Acids Res; 2018 Aug; 46(14):7436-7449. PubMed ID: 29931269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using experimental evolution to probe molecular mechanisms of protein function.
    Fischer M; Kang M; Brindle NP
    Protein Sci; 2016 Feb; 25(2):352-9. PubMed ID: 26509591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A facile method of mapping HIV-1 neutralizing epitopes using chemically masked cysteines and deep sequencing.
    Datta R; Roy Chowdhury R; Manjunath K; Hanna LE; Varadarajan R
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29584-29594. PubMed ID: 33168755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.