BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 27887026)

  • 21. Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (R)-specific alcohol dehydrogenase.
    Ernst M; Kaup B; Müller M; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):629-34. PubMed ID: 15549291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient and Selective Electrochemically Driven Enzyme-Catalyzed Reduction of Carbon Dioxide to Formate using Formate Dehydrogenase and an Artificial Cofactor.
    Jayathilake BS; Bhattacharya S; Vaidehi N; Narayanan SR
    Acc Chem Res; 2019 Mar; 52(3):676-685. PubMed ID: 30741524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How does methylviologen cation radical supply two electrons to the formate dehydrogenase in the catalytic reduction process of CO
    Miyaji A; Amao Y
    Phys Chem Chem Phys; 2020 Sep; 22(33):18595-18605. PubMed ID: 32785412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Kinetics of NAD-dependent formate dehydrogenase from the methanol-utilizing yeast Candida methylica].
    Zaks AM; Avilova TV; Egorova OA; Popov VO; Egorov AM
    Biokhimiia; 1982 Apr; 47(4):546-51. PubMed ID: 7082688
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rational Engineering of Formate Dehydrogenase Substrate/Cofactor Affinity for Better Performance in NADPH Regeneration.
    Jiang HW; Chen Q; Pan J; Zheng GW; Xu JH
    Appl Biochem Biotechnol; 2020 Oct; 192(2):530-543. PubMed ID: 32405732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Mechanism of Metal-Containing Formate Dehydrogenases Revisited: The Formation of Bicarbonate as Product Intermediate Provides Evidence for an Oxygen Atom Transfer Mechanism.
    Kumar H; Khosraneh M; Bandaru SSM; Schulzke C; Leimkühler S
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein engineering of formate dehydrogenase.
    Tishkov VI; Popov VO
    Biomol Eng; 2006 Jun; 23(2-3):89-110. PubMed ID: 16546445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering of formate dehydrogenase for improving conversion potential of carbon dioxide to formate.
    Shi HL; Yuan SW; Xi XQ; Xie YL; Yue C; Zhang YJ; Yao LG; Xue C; Tang CD
    World J Microbiol Biotechnol; 2023 Oct; 39(12):352. PubMed ID: 37864750
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):217-29. PubMed ID: 12616691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two W-containing formate dehydrogenases (CO2-reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans.
    de Bok FA; Hagedoorn PL; Silva PJ; Hagen WR; Schiltz E; Fritsche K; Stams AJ
    Eur J Biochem; 2003 Jun; 270(11):2476-85. PubMed ID: 12755703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NADH-dependent formate dehydrogenase mutants for efficient carbon dioxide fixation.
    Xue Y; Ji X; Li Z; Ma F; Jiang J; Huang Y
    Bioresour Technol; 2024 Feb; 393():130027. PubMed ID: 37977496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Active-site characterization of Candida boidinii formate dehydrogenase.
    Labrou NE; Rigden DJ
    Biochem J; 2001 Mar; 354(Pt 2):455-63. PubMed ID: 11171126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A pH-controlled fed-batch process can overcome inhibition by formate in NADH-dependent enzymatic reductions using formate dehydrogenase-catalyzed coenzyme regeneration.
    Neuhauser W; Steininger M; Haltrich D; Kulbe KD; Nidetzky B
    Biotechnol Bioeng; 1998 Nov; 60(3):277-82. PubMed ID: 10099429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and biochemical characterization of the M405S variant of Desulfovibrio vulgaris formate dehydrogenase.
    Vilela-Alves G; Rebelo Manuel R; Pedrosa N; Cardoso Pereira IA; Romão MJ; Mota C
    Acta Crystallogr F Struct Biol Commun; 2024 May; 80(Pt 5):98-106. PubMed ID: 38699971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction of Functionally Compartmental Inorganic Photocatalyst-Enzyme System via Imitating Chloroplast for Efficient Photoreduction of CO
    Tian Y; Zhou Y; Zong Y; Li J; Yang N; Zhang M; Guo Z; Song H
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34795-34805. PubMed ID: 32805792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sulfido and cysteine ligation changes at the molybdenum cofactor during substrate conversion by formate dehydrogenase (FDH) from Rhodobacter capsulatus.
    Schrapers P; Hartmann T; Kositzki R; Dau H; Reschke S; Schulzke C; Leimkühler S; Haumann M
    Inorg Chem; 2015 Apr; 54(7):3260-71. PubMed ID: 25803130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidation-State-Dependent Binding Properties of the Active Site in a Mo-Containing Formate Dehydrogenase.
    Robinson WE; Bassegoda A; Reisner E; Hirst J
    J Am Chem Soc; 2017 Jul; 139(29):9927-9936. PubMed ID: 28635274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial surface displaying formate dehydrogenase and its application in optical detection of formate.
    Liu A; Feng R; Liang B
    Enzyme Microb Technol; 2016 Sep; 91():59-65. PubMed ID: 27444330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing recombinant Chaetomium thermophilium Formate Dehydrogenase Expression with CRISPR Technology.
    Ar E; Demiroğlu A; Yılmaz MS; Yılmazer B; Aslan ES; Binay B
    Protein J; 2021 Aug; 40(4):504-511. PubMed ID: 33999303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Light driven CO2 fixation by using cyanobacterial photosystem I and NADPH-dependent formate dehydrogenase.
    Ihara M; Kawano Y; Urano M; Okabe A
    PLoS One; 2013; 8(8):e71581. PubMed ID: 23936519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.